Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (8): 901-909.DOI: 10.15541/jim20220733
Special Issue: 【信息功能】发光材料与器件(202506)
• RESEARCH ARTICLE • Previous Articles Next Articles
ZENG Qiqi(), WU Yanzheng, CHENG Huangyu, SHAO kang, HU Tianyu, PAN Zaifa(
)
Received:
2022-12-05
Revised:
2023-01-09
Published:
2023-08-20
Online:
2023-02-21
Contact:
PAN Zaifa, associate professor. E-mail: panzaifa@zjut.edu.cnAbout author:
ZENG Qiqi (1999-), female, Master candidate. E-mail: zengqiqi0513@163.com
Supported by:
CLC Number:
ZENG Qiqi, WU Yanzheng, CHENG Huangyu, SHAO kang, HU Tianyu, PAN Zaifa. Calcium Doped Self-activated Zinc Germanate Long Afterglow Materials: Multicolor Afterglow and Application in Dynamic Anti-counterfeiting[J]. Journal of Inorganic Materials, 2023, 38(8): 901-909.
Fig. 3 Diffuse reflection spectra and band gap widths of ZCGO series samples (a) UV-Vis diffuse reflectance spectra of ZCGO samples; (b) (F(R)×E)1/2-E diagram of ZCGO series sample; Colorful figures are available on website (Band gap energy is estimated by intercept of the tangential)
Fig. 4 Excitation spectra under different monitoring wavelengths and photos in different light sources of ZCGO series samples (a) 450 nm; (b) 526 nm; (c) 600 nm; (d) Photographs of ZCGO samples excited by daylight, 254 and 365 nm; Colorful figures are available on website
Fig. 5 Emission spectra of ZCGO series samples at different excitation wavelengths (a, b) Steady-state emission spectra of ZCGO samples excited at (a) 267 nm and (b) 376 nm; (c, d) Time-resolved emission spectra of ZCGO samples excited at (c) 267 nm, (d) 376 nm; Colorful figures are available on website
Fig. 6 Afterglow decay curves of ZCGO series samples and ZCGO-5 samples under different monitoring wavelengths (a, b) Afterglow decay curves of ZCGO samples excited at 267 nm and monitored at (a) 450 nm and (b) 526 nm; (c) Afterglow decay curves of ZCGO samples excited at 376 nm and monitored at 600 nm; (d) Afterglow decay curves of ZCGO-5 samples monitored at 450 nm, 526 nm and 600 nm; Colorful figures are available on website
Sample | τ1/s | A1 | τ2/s | A2 | τavg/s |
---|---|---|---|---|---|
ZCGO-1 | 6.82 | 0.61 | 81.44 | 0.58 | 75.88 |
ZCGO-2 | 6.52 | 0.91 | 90.57 | 0.97 | 85.26 |
ZCGO-3 | 7.88 | 0.67 | 87.94 | 0.85 | 82.68 |
ZCGO-4 | 6.78 | 0.85 | 88.58 | 0.98 | 83.47 |
ZCGO-5 | 9.17 | 0.65 | 88.49 | 0.83 | 82.53 |
ZGO | 4.92 | 0.65 | 66.13 | 0.40 | 63.47 |
Table 1 Parameters for double-exponentially fitting afterglow decay of ZCGO-5 and ZGO samples
Sample | τ1/s | A1 | τ2/s | A2 | τavg/s |
---|---|---|---|---|---|
ZCGO-1 | 6.82 | 0.61 | 81.44 | 0.58 | 75.88 |
ZCGO-2 | 6.52 | 0.91 | 90.57 | 0.97 | 85.26 |
ZCGO-3 | 7.88 | 0.67 | 87.94 | 0.85 | 82.68 |
ZCGO-4 | 6.78 | 0.85 | 88.58 | 0.98 | 83.47 |
ZCGO-5 | 9.17 | 0.65 | 88.49 | 0.83 | 82.53 |
ZGO | 4.92 | 0.65 | 66.13 | 0.40 | 63.47 |
Fig. 7 TL curves of ZCGO series samples under different monitoring wavelengths and trap depth histogram of samples (a, b) TL curves of ZCGO series samples monitored at (a) 526 and (b) 600 nm; (c) TL curves of ZCGO-1 and ZGO samples monitored at 766 nm; (d) Trap depths corresponding to TL peaks of ZCGO series samples; Colorful figures are available on website
[1] | XU Z Y. Luminescence mechanism and structure characteristics of long afterglow phosphors. Modern Chemical Research, 2017, 8: 54. |
[2] | ZHOU Z H, LI Y Y, PENG M Y. Near-infrared persistent phosphors: synthesis, design, and applications. Chemical Engineering Journal, 2020, 399: 125688. |
[3] | HUANG K, LE N, WANG J S, et al. Designing next generation of persistent luminescence: recent advances in uniform persistent luminescence nanoparticles. Advance Materials, 2022, 34(14): 2107962. |
[4] |
XU J, TANABE S. Persistent luminescence instead of phosphorescence: history, mechanism, and perspective. Journal of Luminescence, 2019, 205: 581.
DOI URL |
[5] |
LIN Y H, ZHANG Z T, TANG Z L, et al. The characterization and mechanism of long afterglow in alkaline earth aluminates phosphors co-doped by Eu2O3 and Dy2O3. Materials Chemistry and Physics, 2001, 70: 156.
DOI URL |
[6] |
SRIVASTAVA B B, GUPTA S K, LI Y, et al. Bright persistent green emitting water-dispersible Zn2GeO4:Mn nanorods. Dalton Transactions, 2020, 49(22): 7328.
DOI URL |
[7] |
SUZUKI V Y, DE PAULA N H, GONCALVES R, et al. Exploring effects of microwave-assisted thermal annealing on optical properties of Zn2GeO4 nanostructured films. Materials Science and Engineering: B, 2019, 246: 7.
DOI URL |
[8] | BAI Q, WANNG Z J, LI P L, et al. Zn2-aGeO4:aRE and Zn2Ge1-aO4:aRE (RE=Ce3+, Eu3+, Tb3+, Dy3+): 4f-4f and 5d-4f transition luminescence of rare earth ions under different substitution. RSC Advances, 2016, 6(104): 102183. |
[9] | CHI F F, WEI X T, JIANG B, et al. Luminescence properties and the thermal quenching mechanism of Mn2+ doped Zn2GeO4 long persistent phosphors. Dalton Transactins, 2018, 47(4): 1303. |
[10] |
LI H, WANG Y H, CHEN S H, et al. Enhanced persistent luminescence of Zn2GeO4 host by Ti4+ doping. Journal of Materials Science: Materials in Electronics, 2017, 28(19): 14827.
DOI URL |
[11] |
SHANG M M, LI G G, YANG D M, et al. (Zn, Mg)2GeO4:Mn2+ submicrorods as promising green phosphors for field emission displays: hydrothermal synthesis and luminescence properties. Dalton Transactions, 2011, 40(37): 9379.
DOI URL |
[12] |
ANOOP G, KRISHNA M K, JAYARAJ M K, et al. The effect of Mg incorporation on structural and optical properties of Zn2GeO4 :Mn phosphor. Journal of the Electrochemical Society, 2008, 155(1): J7.
DOI URL |
[13] |
HE H L, ZHANG Y H, PAN Q W, et al. Controllable synthesis of Zn2GeO4:Eu nanocrystals with multi-color emission for white light-emitting diodes. Journal of Materials Chemistry C, 2015, 3(21): 5419.
DOI URL |
[14] |
ZHANG S A, HU Y H, CHEN R, et al. Photoluminescence and persistent luminescence in Bi3+-doped Zn2GeO4 phosphors. Optical Materials, 2014, 36(11): 1830.
DOI URL |
[15] |
PENG X L, TANG Z T, LUO Y H, et al. Visual color modulation and luminescence mechanism studies on Mn/Eu co-doped Zn-Mg- Ge-O long afterglow system. Ceramics International, 2020, 46(9): 14005.
DOI URL |
[16] |
SHI L X, ZHENG W W, MIAO H Y, et al. Ratiometric persistent luminescence aptasensors for carcinoembryonic antigen detection. Microchimica Acta, 2020, 187(11): 615.
DOI |
[17] |
GAO D L, MA K W, WANG P, et al. Tuning multicolour emission of Zn2GeO4:Mn phosphors by Li+ doping for information encryption and anti-counterfeiting applications. Dalton Transactions, 2022, 51(2): 553.
DOI URL |
[18] | GAO D L, KUANG Q Q, GAO F, et al. Achieving opto-responsive multimode luminescence in Zn1+xGa2-2xGexO4:Mn persistent phosphors for advanced anti-counterfeiting and information encryption. Materials Today Physics, 2022, 27: 100765. |
[19] | LIU Z S, JING X P, WANG L X. Luminescence of native defects in Zn2GeO4. Journal of The Electrochemical Society, 2007, 154(6): 500. |
[20] |
BANDPAY M G, AMERI F, ANSARI K, et al. Mathematical and empirical evaluation of accuracy of the Kubelka-Munk model for color match prediction of opaque and translucent surface coatings. Journal of Coatings Technology and Research, 2018, 15(5): 1117.
DOI |
[21] |
LÓPEZ R, GÓMEZ R. Band-gap energy estimation from diffuse reflectance measurements on Sol-Gel and commercial TiO2: a comparative study. Journal of Sol-Gel Science and Technology, 2012, 61(1): 1.
DOI URL |
[22] |
MALDINEY T, LECOINTRE A, VIANA B, et al. Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging. Journal of the American Chemical Society, 2011, 133(30): 11810.
DOI URL |
[23] | WANG K, YAN L P, SHAO K, et al. Near-infrared afterglow enhancement and trap distribution analysis of silicon-chromium co-doped persistent luminescence materials Zn1+xGa2-2xSixO4:Cr3+. Journal of Inorganic Materials, 2019, 39(9): 983. |
[24] |
WANG C L, JIN Y H, LÜ Y, et al. Trap distribution tailoring guided design of super-long-persistent phosphor Ba2SiO4:Eu2+, Ho3+ and photostimulable luminescence for optical information storage. Journal of Materials Chemistry C, 2018, 6(22): 6058.
DOI URL |
[25] |
MARTINČEK I, TUREK I, TARJÁNYI N. Effect of boundary on refractive index of PDMS. Optical Materials Express, 2014, 4(10): 1997.
DOI URL |
[1] | ZHANG Cong, LI Yurou, SHAO Kang, LIN Jing, WANG Kai, PAN Zaifa. Luminescence Property of the Multicolor Persistent Luminescence Materials for Dynamic Anti-counterfeiting Applications [J]. Journal of Inorganic Materials, 2021, 36(12): 1256-1262. |
[2] | WANG Kai, YAN Li-Ping, SHAO Kang, ZHANG Cong, PAN Zai-Fa. Near-infrared Afterglow Enhancement and Trap Distribution Analysis of Silicon-chromium Co-doped Persistent Luminescence Materials Zn1+xGa2-2xSixO4:Cr3+ [J]. Journal of Inorganic Materials, 2019, 34(9): 983-990. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||