Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (8): 897-902.DOI: 10.15541/jim20210773
• RESEARCH ARTICLE • Previous Articles Next Articles
LIU Qi(), ZHU Can, XIE Guizhen, WANG Jun, ZHANG Dongming, SHAO Gangqin(
)
Received:
2021-12-17
Revised:
2022-04-07
Published:
2022-08-20
Online:
2022-04-07
Contact:
SHAO Gangqin, professor. E-mail: gqshao@whut.edu.cnAbout author:
LIU Qi (1993-), male, Master. E-mail: liuqi19930126@163.com
CLC Number:
LIU Qi, ZHU Can, XIE Guizhen, WANG Jun, ZHANG Dongming, SHAO Gangqin. Optical Absorption and Photoluminescence Spectra of Ce-doped SrMgF4 Polycrystalline with Superlattice Structure[J]. Journal of Inorganic Materials, 2022, 37(8): 897-902.
[1] |
OGORODNIKOV I N, PUSTOVAROV V A, ISAENKO L I, et al. Radiation-stimulated processes in SrMgF4 single crystals irradiated with fast electrons. Optical Materials, 2021, 118: 111234.
DOI URL |
[2] |
SINGH V S, BELSARE P D, MOHARIL S V. Wet chemical synthesis and study of luminescence in some Eu2+ activated AEMgF4 hosts. Physics of the Solid State, 2021, 62(12): 2318-2324.
DOI URL |
[3] | SOFRONOVA A Y, PUSTOVAROV V A, OGORODNIKOV I N. Radiation-induced defects in SrMgF4 single crystals irradiated by fast electrons. AIP Conference Proceedings, 2019, 2174: 020172. |
[4] |
GARCIA-CASTRO A C, IBARRA-HERNANDEZ W, BOUSQUET E, et al. Direct magnetization-polarization coupling in BaCuF4. Physical Review Letters, 2018, 121(11): 117601.
DOI URL |
[5] |
ATUCHIN V V, GOLOSHUMOVA A A, ISAENKO L I, et al. Crystal growth and electronic structure of low-temperature phase SrMgF4. Journal of Solid State Chemistry, 2016, 236: 89-93.
DOI URL |
[6] |
SCOTT J F. Searching for new ferroelectrics and multiferroics: a user’s point of view. npj Computational Materials, 2015, 1: 15006.
DOI URL |
[7] |
KUBEL F, HAGEMANN H, BILL H. Synthesis, crystal structures and spectroscopic investigations on samarium-doped mixed Ba1-δSrδMgF4 crystals. Materials Research Bulletin, 1997, 32(3): 263-269.
DOI URL |
[8] |
QUI B, BANKS E. The binary system SrF2-MgF2: phase diagram and study of growth of SrMgF4. Materials Research Bulletin, 1982, 17(9): 1185-1189.
DOI URL |
[9] |
BANKS E, NAKAJIMA S, SHONE M. New complex fluorides EuMgF4, SmMgF4, SrMgF4, and their solid solutions: photoluminescence and energy transfer. Journal of the Electrochemical Society, 1980, 127(10): 2234-2239.
DOI URL |
[10] |
EIBSCHÜTZ M, GUGGENHEIM H J. Antiferromagnetic-piezoelectric crystals: BaMF4(M = Mn, Fe, Co and Ni). Solid State Communications, 1968, 6(10): 737-739.
DOI URL |
[11] | ISHIZAWA N, SUDA K, ETSCHMANN B E, et al. Monoclinic superstructure of SrMgF4 with perovskite-type slabs. Acta Crystallographica Section C, 2001, 57(7): 784-786. |
[12] | ABRAHAMS S C. Structurally ferroelectric SrMgF4. Acta Crystallographica Section B, 2002, 58(1): 34-37. |
[13] |
MEL’NIKOVA S V, ISAENKO L I, GOLOSHUMOVA A A, et al. Investigation of the ferroelastic phase transition in the SrMgF4 pyroelectric crystal. Physics of the Solid State, 2014, 56(4): 757-760.
DOI URL |
[14] |
YELISSEYEV A P, JIANG X X, ISAENKO L I, et al. Structures and optical properties of two phases of SrMgF4. Physical Chemistry Chemical Physics, 2015, 17(1): 500-508.
DOI URL |
[15] |
YAMAGA M, KODAMA N. Vacuum ultraviolet spectroscopy of Ce3+-doped SrMgF4with superlattice structure. Journal of Physics- Condensed Matter, 2006, 18(26): 6033-6044.
DOI URL |
[16] |
HAGEMANN H, KUBEL F, BILL H, et al. 5D0→ 7F0 transitions of Sm2+ in SrMgF4: Sm2+ Journal of Alloys and Compounds, 2004, 374(1/2): 194-196.
DOI URL |
[17] |
CAO Z C, SHI C S, NI J Z. The valency and spectra of samarium ions in MF2-MgF2 (M=Ca, Sr, Ba). Journal of Luminescence, 1993, 55(5/6): 221-224.
DOI URL |
[18] |
TAMBOLI S, KADAM R M, DHOBLE S J. Photoluminescence and electron paramagnetic resonance properties of a potential phototherapic agent: MMgF4: Gd3+ (M = Ba, Sr) sub-microphosphors. Luminescence, 2016, 31(7): 1321-1328.
DOI URL |
[19] |
TIAN H Y, SHEN H Y, YANG Q H, et al. Synthesis, characterization and fluorescent properties of complex fluoride BaNiF4: Ce3+. Advanced Materials Research, 2012, 465: 56-60.
DOI URL |
[20] |
ZHU G X, XIE M B, YANG Q, et al. Hydrothermal synthesis and spectral properties of Ce3+ and Eu2+ ions doped KMgF3 phosphor. Optics and Laser Technology, 2016, 81: 162-167.
DOI URL |
[21] |
KORE B P, TAMBOLI S, DHOBLE N S, et al. Efficient resonance energy transfer study from Ce3+ to Tb3+ in BaMgF4. Materials Chemistry and Physics, 2017, 187: 233-244.
DOI URL |
[22] |
JANSSENS S, WILLIAMS G V M, CLARKE D. Synthesis and characterization of rare earth and transition metal doped BaMgF4 nanoparticles. Journal of Luminescence, 2013, 134: 277-283.
DOI URL |
[23] |
WATANABE S, ISHII T, FUJIMURA K, et al. First-principles relativistic calculation for 4f-5d transition energy of Ce3+ in various fluoride hosts. Journal of Solid State Chemistry, 2006, 179(8): 2438-2442.
DOI URL |
[24] |
YAMAGA M, HATTORI K, KODAMA N, et al. Superlattice structure of Ce3+-doped BaMgF4 fluoride crystals-X-ray diffraction, electron spin-resonance, and optical investigations. Journal of Physics-Condensed Matter, 2001, 13(48): 10811-10824.
DOI URL |
[25] |
KODAMA N, HOSHINO T, YAMAGA M, et al. Optical and structural studies on BaMgF4:Ce3+ crystals. Journal of Crystal Growth, 2001, 229(1): 492-496.
DOI URL |
[26] |
YAMAGA M, IMAI T, KODAMA N. Optical properties of two Ce3+-site centers in BaMgF4: Ce3+ crystals. Journal of Luminescence, 2000, 87-89: 992-994.
DOI URL |
[27] |
REY J M, BILL H, LOVY D, et al. Europium doped BaMgF4, an EPR and optical investigation. Journal of Alloys and Compounds, 1998, 268(1): 60-65.
DOI URL |
[28] | HAYASHI E, ITO K, YABASHI S, et al. Vacuum ultraviolet and ultraviolet spectroscopy of BaMgF4 co-doped with Ce3+ and Na+. Journal of Luminescence, 2006, 119: 69-74. |
[29] | HAYASHI E, ITO K, YABASHI S, et al. Ultraviolet irradiation effect of Ce3+-doped BaMgF4 crystals. Journal of Alloys and Compounds, 2006, 408: 883-885. |
[30] |
PUSTOVAROV V A, OGORODNIKOV I N, OMELKOV S I, et al. Electronic excitations and luminescence of SrMgF4 single crystals. Physics of the Solid State, 2014, 56(3): 456-467.
DOI URL |
[31] |
OGORODNIKOV I N, PUSTOVAROV V A, OMELKOV S I, et al. A far ultraviolet spectroscopic study of the reflectance, luminescence and electronic properties of SrMgF4 single crystals. Journal of Luminescence, 2014, 145: 872-879.
DOI URL |
[32] |
SCHOLZ G, BREITFELD S, KRAHL T, et al. Mechanochemical synthesis of MgF2-MF2 composite systems (M = Ca, Sr, Ba). Solid State Sciences, 2015, 50: 32-41.
DOI URL |
[33] | LIU Q. Photoluminescence properties of rare-earth Ce-doped SrMgF4 powder prepared through a wet-chemical route. Wuhan: Master Thesis of Wuhan University of Technology, 2019. |
[34] | ZHANG D M, LIU Q, SHAO G Q, et al. The Ce-doped SrMgF4 fluorescent materials and their preparation method thereof. Chinese Invention Patent, Appl. No.201910294625.6, 2019-4-12. |
[35] |
VEITSCH C, KUBEL F, HAGEMANN H. Photoluminescence of nanocrystalline SrMgF4 prepared by a solution chemical route. Materials Research Bulletin, 2008, 43(1): 168-175.
DOI URL |
[36] | SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, 1976, A32: 751-767. |
[37] |
LIU Z P, XU Y, LI Z H, et al. Sulfur-resistant methanation over MoO3/CeO2-ZrO2 catalyst: influence of Ce-addition methods. Journal of Energy Chemistry, 2019, 28: 31-38.
DOI URL |
[38] | JEONG D W, NA H S, SHIM J O, et al. A crucial role for the CeO2-ZrO2 support for the low temperature water gas shift reaction over Cu-CeO2-ZrO2 catalysts. Catalysis Science & Technology, 2015, 5(7): 3706-3713. |
[39] |
SHAN W P, LIU F D, HE H, et al. A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Applied Catalysis B: Environmental, 2012, 115-116: 100-106.
DOI URL |
[40] | LOEF E V D, DORENBOS P, EIJK C W E, et al. Scintillation properties of LaBr3: Ce3+ crystals: fast, efficient and high-energy- resolution scintillators. IEEE Transactions on Nuclear Science, 2002, 486(1): 254-258. |
[41] |
BLASSE G, BRIL A. Investigation of some Ce3+-activated phosphors. Journal of Chemical Physics, 1967, 47(47): 5139-5145.
DOI URL |
[42] |
DORENBOS P, PIERRON L, DINCA L, et al. 4f-5d spectroscopy of Ce3+ in CaBPO5, LiCaPO4 and Li2CaSiO4. Journal of Physics Condensed Matter, 2003, 15(3): 511-520.
DOI URL |
[1] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[2] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
[3] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[4] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[5] | YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(4): 359-366. |
[6] | CHEN Zhengpeng, JIN Fangjun, LI Mingfei, DONG Jiangbo, XU Renci, XU Hanzhao, XIONG Kai, RAO Muming, CHEN Chuangting, LI Xiaowei, LING Yihan. Double Perovskite Sr2CoFeO5+δ: Preparation and Performance as Cathode Material for Intermediate-temperature Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2024, 39(3): 337-344. |
[7] | ZHOU Zezhu, LIANG Zihui, LI Jing, WU Congcong. Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents [J]. Journal of Inorganic Materials, 2024, 39(11): 1197-1204. |
[8] | LI Qianyuan, LI Jiwei, ZHANG Yuhan, LIU Yankang, MENG Yang, CHU Yu, ZHU Yijia, XU Nuoyan, ZHU Liang, ZHANG Chuanxiang, TAO Haijun. Enhanced Photovoltaic Performance of Perovskite Solar Cells by PbTiO3 Modification and Polarization Treatment [J]. Journal of Inorganic Materials, 2024, 39(11): 1205-1211. |
[9] | DAI Xiaodong, ZHANG Luwei, QIAN Yicheng, REN Zhixin, CAO Huanqi, YIN Shougen. Controlling Vertical Composition Gradients in Sn-Pb Mixed Perovskite Solar Cells via Solvent Engineering [J]. Journal of Inorganic Materials, 2023, 38(9): 1089-1096. |
[10] | DONG Siyin, TIE Shujie, YUAN Ruihan, ZHENG Xiaojia. Research Progress on Low-dimensional Halide Perovskite Direct X-ray Detectors [J]. Journal of Inorganic Materials, 2023, 38(9): 1017-1030. |
[11] | WANG Run, XIANG Hengyang, ZENG Haibo. Carrier Balanced Distribution Regulation of Multi-emissive Centers in Tandem PeLEDs [J]. Journal of Inorganic Materials, 2023, 38(9): 1062-1068. |
[12] | WANG Machao, TANG Yangmin, DENG Mingxue, ZHOU Zhenzhen, LIU Xiaofeng, WANG Jiacheng, LIU Qian. Cs2Ag0.1Na0.9BiCl6:Tm3+ Double Perovskite: Coprecipitation Preparation and Near-infrared Emission [J]. Journal of Inorganic Materials, 2023, 38(9): 1083-1088. |
[13] | HAN Xu, YAO Hengda, LYU Mei, LU Hongbo, ZHU Jun. Application of Single-molecule Liquid Crystal Additives in CH(NH2)2PbI3 Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 1097-1102. |
[14] | FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 2023, 38(9): 1103-1109. |
[15] | CAI Kai, JIN Zhiwen. Photodetector Based on Two-dimensional Perovskite (PEA)2PbI4 [J]. Journal of Inorganic Materials, 2023, 38(9): 1069-1075. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||