Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (3): 317-324.DOI: 10.15541/jim20210624
Special Issue: 增材制造专题(2022); 【制备方法】3D打印(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
ZHU Junyi(), ZHANG Cheng, LUO Zhongqiang, CAO Jiwei, LIU Zhiyuan, WANG Pei, LIU Changyong, CHEN Zhangwei(
)
Received:
2021-10-08
Revised:
2021-10-21
Published:
2022-03-20
Online:
2021-11-01
Contact:
CHEN Zhangwei, professor. E-mail: chen@szu.edu.cn
About author:
ZHU Junyi (1996-), male, Master candidate. E-mail: 386398374@qq.com
Supported by:
CLC Number:
ZHU Junyi, ZHANG Cheng, LUO Zhongqiang, CAO Jiwei, LIU Zhiyuan, WANG Pei, LIU Changyong, CHEN Zhangwei. Influence of Debinding Process on the Properties of Photopolymerization 3D Printed Cordierite Ceramics[J]. Journal of Inorganic Materials, 2022, 37(3): 317-324.
Fig. 3 Surface macro-graphs of sample after debinding at different heating rates In air: (a) 0.1 ℃/min; (b) 0.5 ℃/min; (c) 1 ℃/min; (d) 3 ℃/min; (e) 5 ℃/min; In argon: (f) 0.1 ℃/min; (g) 0.5 ℃/min; (h) 1 ℃/min; (i) 3 ℃/min; (j) 5 ℃/min
Fig. 7 Properties of samples after debinding in different atmospheres followed by sintering (a) Shrinkage rate-debinding in air; (b) Shrinkage rate-debinding in argon; (c) Relative density; (d) Bending strength
Fig. 8 Final cordierite ceramics prepared with optimized debinding scheme followed by sintering (a, b) Dense rectangular sample; (c) Honeycomb structures with complex inter-crossing channels
[1] |
CAMERUCCI M A, URRETAVIZCAYA G, CASTRO M S, et al. Electrical properties and thermal expansion of cordierite and cordierite- mullite materials. Journal of the European Ceramic Society, 2001, 21(16): 2917-2923.
DOI URL |
[2] |
LAMARA S, REDAOUI D, SAHNOUNE F, et al. Microstructure, thermal expansion, hardness and thermodynamic parameters of cordierite materials synthesized from Algerian natural clay minerals and magnesia. Boletín de la Sociedad Española de Cerámica y Vidrio, 2020, 60(5): 291-306.
DOI URL |
[3] | SITTIAKKARANON S. Thermal shock resistance of mullite- cordierite ceramics from kaolin, talc and alumina raw materials. Materials Today: Proceedings, 2019, 17(4): 1864-1871. |
[4] |
CHEN Z, LIU C, LI J, et al. Mechanical properties and microstructures of 3D printed bulk cordierite parts. Ceramics International, 2019, 45(15): 19257-19267.
DOI URL |
[5] |
GÖKÇE H, AĞAOĞULLARI D, ÖVEÇOĞLU M L, et al. Characterization of microstructural and thermal properties of steatite/ cordierite ceramics prepared by using natural raw materials. Journal of the European Ceramic Society, 2011, 31(14): 2741-2747.
DOI URL |
[6] |
AVILA P, MONTES M, MIRÓ E E. Monolithic reactors for environmental applications: a review on preparation technologies. Chemical Engineering Journal, 2005, 109(1/2/3): 11-36.
DOI URL |
[7] |
DAS R N, MADHUSOODANA C D, OKADA K, Rheological studies on cordierite honeycomb extrusion. Journal of the European Ceramic Society, 2002, 22(16): 2893-2900.
DOI URL |
[8] |
LIANG Q, LI D, YANG G. Rapid fabrication of diamond-structured ceramic photonic crystals with graded dielectric constant and its controllable stop band properties. Ceramics International, 2013, 39(1): 153-157.
DOI URL |
[9] |
MELCHELS F P W, FEIJEN J, GRIJPMA D W. A review on stereolithography and its applications in biomedical engineering. Biomaterials, 2010, 31(24): 6121-6130.
DOI URL |
[10] |
ZHOU W, LI D, CHEN Z. Direct fabrication of an integral ceramic mould by stereolithography. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2010, 224(2): 237-243.
DOI URL |
[11] |
ZOCCA A, COLOMBO P, GOMES C M, et al. Additive manufacturing of ceramics: issues, potentialities, and opportunities. Journal of the American Ceramic Society, 2015, 98(7): 1983-2001.
DOI URL |
[12] |
CHEN Z, LI Z, LI J, et al. 3D printing of ceramics: a review. Journal of the European Ceramics Society, 2019, 39(4): 661-687.
DOI URL |
[13] |
CHEN Z, LI D, ZHOU W. Process parameters appraisal of fabricating ceramic parts based on stereolithography using the Taguchi method. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226(7): 1249-1258.
DOI URL |
[14] |
LIU Y, CHEN Z, LI J, et al. 3D printing of ceramic cellular structures for potential nuclear fusion application. Additive Manufacturing, 2020, 35: 101348.
DOI URL |
[15] |
RASAKI S A, XIONG D, XIONG S, et al. Photopolymerization- based additive manufacturing of ceramics: a systematic review. Journal of Advanced Ceramics, 2021, 10(3): 442-471.
DOI URL |
[16] |
LIU C, XU F, LIU Y, et al. High mass loading ultrathick porous Li4Ti5O12 electrodes with improved areal capacity fabricated via low temperature direct writing. Electrochimica Acta, 2019, 314: 81-88.
DOI URL |
[17] |
WU Z, HUAN Z, ZHU Y, et al. 3D printing and characterization of microsphere hydroxyapatite scaffolds. Journal of Inorganic Materials, 2021, 36(6): 601-607.
DOI URL |
[18] |
CHEN Z, BRANDON N. Inkjet printing and nanoindentation of porous alumina multilayers. Ceramics International, 2016, 42(7): 8316-8324.
DOI URL |
[19] |
CHEN Z, OUYANG J, LIANG W, et al. Development and characterizations of novel aqueous-based LSCF suspensions for inkjet printing. Ceramics International, 2018, 44(11): 13381-13388.
DOI URL |
[20] |
ZHANG L, YANG X, XU X, et al. 3D printed zirconia ceramics via fused deposit modeling and its mechanical properties. Journal of Inorganic Materials, 2021, 36(4): 436-442.
DOI |
[21] |
LIU S, LI M, WU J, et al. Preparation of high-porosity Al2O3 ceramic foams via selective laser sintering of Al2O3 poly-hollow microspheres. Ceramics International, 2020, 46(4): 4240-4247.
DOI URL |
[22] |
FERRAGE L, BERTRAND G, LENORMAND P. Dense yttria- stabilized zirconia obtained by direct selective laser sintering. Additive Manufacturing, 2018, 21: 472-478.
DOI URL |
[23] |
MINASYAN T, LIU L, AGHAYAN M, et al. A novel approach to fabricate Si3N4 by selective laser melting. Ceramics International, 2018, 44(12): 13689-13694.
DOI URL |
[24] |
CHEN Z, LI J, LIU C, et al. Preparation of high solid loading and low viscosity ceramic slurries for photopolymerization-based 3D printing. Ceramics International, 2019, 45(9): 11549-11557.
DOI URL |
[25] |
SHUAI X, ZENG Y, LI P, et al. Fabrication of fine and complex lattice structure Al2O3 ceramic by digital light processing 3D printing technology. Journal of Materials Science, 2020, 55: 6771-6782.
DOI URL |
[26] | LI H, SONG L, SUN J, et al. Stereolithography-fabricated zirconia dental prostheses: concerns based on clinical requirements. Journal of Advances in Applied Ceramics, 2020, 119(5/6): 236-243. |
[27] |
FENG C, ZHANG C, HE R, et al. Additive manufacturing of hydroxyapatite bioceramic scaffolds: dispersion, digital light processing, sintering, mechanical properties, and biocompatibility. Journal of Advanced Ceramics, 2020, 9: 360-373.
DOI URL |
[28] |
HE R, DING G, ZHANG K, et al. Fabrication of SiC ceramic architectures using stereolithography combined with precursor infiltration and pyrolysis. Ceramics International, 2019, 45(11): 14006-14014.
DOI URL |
[29] |
ZHANG C, LUO Z, LIU C, et al. Dimensional retention of photocured ceramic units during 3D printing and sintering processes. Ceramics International, 2021, 47(8): 11097-11108.
DOI URL |
[30] |
CHEN Z, LIU C, LI J, et al. Mechanical properties and microstructures of 3D printed bulk cordierite parts. Ceramics International, 2019, 45(15): 19257-19267.
DOI URL |
[1] | WANG Kanglong, YIN Jie, CHEN Xiao, WANG Li, LIU Xuejian, HUANG Zhengren. Effect of Particle Grading on Properties of Silicon Carbide Ceramics Prepared by Selective Laser Sintering Printing Combined with Solid-phase Sintering at Atmospheric Pressure [J]. Journal of Inorganic Materials, 2024, 39(7): 754-760. |
[2] | LIU Yan, QIN Xianpeng, GAN Lin, ZHOU Guohong, ZHANG Tianjin, WANG Shiwei, CHEN Hetuo. Preparation of Sub-micron Spherical Y2O3 Particles and Transparent Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 691-696. |
[3] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[4] | ZHENG Bin, KANG Kai, ZHANG Qing, YE Fang, XIE Jing, JIA Yan, SUN Guodong, CHENG Laifei. Preparation and Thermal Stability of Ti3SiC2 Ceramics by Polymer Derived Ceramics Method [J]. Journal of Inorganic Materials, 2024, 39(6): 733-740. |
[5] | ZHENG Yawen, ZHANG Cuiping, ZHANG Ruijie, XIA Qian, RU Hongqiang. Fabrication of Boron Carbide Ceramic Composites by Boronic Acid Carbothermal Reduction and Silicon Infiltration Reaction Sintering [J]. Journal of Inorganic Materials, 2024, 39(6): 707-714. |
[6] | LÜ Zhaoyang, XU Yong, YANG Jiuyan, TU Guangsheng, TU Bingtian, WANG Hao. Effect of MgF2 Additive on Preparation and Optical Properties of MgAl1.9Ga0.1O4 Transparent Ceramics [J]. Journal of Inorganic Materials, 2024, 39(5): 531-538. |
[7] | ZHANG Tingting, WANG Fangyuan, LIU Changyou, ZHANG Guorong, LÜ Jiahui, SONG Yuchen, JIE Wanqi. Hydrothermal-sintering Preparation of Cr2+:ZnSe/ZnSe Nanotwins with Core-shell Structure [J]. Journal of Inorganic Materials, 2024, 39(4): 409-415. |
[8] | JIANG Qiang, SHI Lizhi, CHEN Zhengran, ZHOU Zhiyong, LIANG Ruihong. Preparation and Properties of Hard PZT Piezoelectric Ceramics Poled above Curie Temperature and Multilayer Actuators [J]. Journal of Inorganic Materials, 2024, 39(10): 1091-1099. |
[9] | PENG Ping, TAN Litao. Structure and Piezoelectric Properties of CuO-doped (Ba,Ca)(Ti,Sn)O3 Ceramics [J]. Journal of Inorganic Materials, 2024, 39(10): 1100-1106. |
[10] | WANG Bo, CAI Delong, ZHU Qishuai, LI Daxin, YANG Zhihua, DUAN Xiaoming, LI Yanan, WANG Xuan, JIA Dechang, ZHOU Yu. Mechanical Properties and Thermal Shock Resistance of SrAl2Si2O8 Reinforced BN Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(10): 1182-1188. |
[11] | KE Xin, XIE Bingqing, WANG Zhong, ZHANG Jingguo, WANG Jianwei, LI Zhanrong, HE Huijun, WANG Limin. Progress of Interconnect Materials in the Third-generation Semiconductor and Their Low-temperature Sintering of Copper Nanoparticles [J]. Journal of Inorganic Materials, 2024, 39(1): 17-31. |
[12] | LI Junsheng, ZENG Liang, LIU Rongjun, WANG Yanfei, WAN Fan, LI Duan. Functional Strontium Tantalum Oxynitride Ceramics: Efficient Synthesis, Densification and Dielectric Performance [J]. Journal of Inorganic Materials, 2023, 38(8): 885-892. |
[13] | FENG Jingjing, ZHANG Youran, MA Mingsheng, LU Yiqing, LIU Zhifu. Current Status and Development Trend of Cold Sintering Process [J]. Journal of Inorganic Materials, 2023, 38(2): 125-136. |
[14] | JIN Xihai, DONG Manjiang, KAN Yanmei, LIANG Bo, DONG Shaoming. Fabrication of Transparent AlON by Gel Casting and Pressureless Sintering [J]. Journal of Inorganic Materials, 2023, 38(2): 193-198. |
[15] | WANG Haidong, WANG Yan, ZHU Zhaojie, LI Jianfu, LAKSHMINARAYANA Gandham, TU Chaoyang. Crystal Growth and Structural, Optical, and Visible Fluorescence Traits of Dy3+-doped SrGdGa3O7 Crystal [J]. Journal of Inorganic Materials, 2023, 38(12): 1475-1482. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||