Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (3): 317-324.DOI: 10.15541/jim20210624
Special Issue: 增材制造专题(2022)
• RESEARCH ARTICLE • Previous Articles Next Articles
ZHU Junyi(), ZHANG Cheng, LUO Zhongqiang, CAO Jiwei, LIU Zhiyuan, WANG Pei, LIU Changyong, CHEN Zhangwei(
)
Received:
2021-10-08
Revised:
2021-10-21
Published:
2022-03-20
Online:
2021-11-01
Contact:
CHEN Zhangwei, professor. E-mail: chen@szu.edu.cn
About author:
ZHU Junyi (1996-), male, Master candidate. E-mail: 386398374@qq.com
Supported by:
CLC Number:
ZHU Junyi, ZHANG Cheng, LUO Zhongqiang, CAO Jiwei, LIU Zhiyuan, WANG Pei, LIU Changyong, CHEN Zhangwei. Influence of Debinding Process on the Properties of Photopolymerization 3D Printed Cordierite Ceramics[J]. Journal of Inorganic Materials, 2022, 37(3): 317-324.
Fig. 3 Surface macro-graphs of sample after debinding at different heating rates In air: (a) 0.1 ℃/min; (b) 0.5 ℃/min; (c) 1 ℃/min; (d) 3 ℃/min; (e) 5 ℃/min; In argon: (f) 0.1 ℃/min; (g) 0.5 ℃/min; (h) 1 ℃/min; (i) 3 ℃/min; (j) 5 ℃/min
Fig. 7 Properties of samples after debinding in different atmospheres followed by sintering (a) Shrinkage rate-debinding in air; (b) Shrinkage rate-debinding in argon; (c) Relative density; (d) Bending strength
Fig. 8 Final cordierite ceramics prepared with optimized debinding scheme followed by sintering (a, b) Dense rectangular sample; (c) Honeycomb structures with complex inter-crossing channels
[1] |
CAMERUCCI M A, URRETAVIZCAYA G, CASTRO M S, et al. Electrical properties and thermal expansion of cordierite and cordierite- mullite materials. Journal of the European Ceramic Society, 2001, 21(16): 2917-2923.
DOI URL |
[2] |
LAMARA S, REDAOUI D, SAHNOUNE F, et al. Microstructure, thermal expansion, hardness and thermodynamic parameters of cordierite materials synthesized from Algerian natural clay minerals and magnesia. Boletín de la Sociedad Española de Cerámica y Vidrio, 2020, 60(5): 291-306.
DOI URL |
[3] | SITTIAKKARANON S. Thermal shock resistance of mullite- cordierite ceramics from kaolin, talc and alumina raw materials. Materials Today: Proceedings, 2019, 17(4): 1864-1871. |
[4] |
CHEN Z, LIU C, LI J, et al. Mechanical properties and microstructures of 3D printed bulk cordierite parts. Ceramics International, 2019, 45(15): 19257-19267.
DOI URL |
[5] |
GÖKÇE H, AĞAOĞULLARI D, ÖVEÇOĞLU M L, et al. Characterization of microstructural and thermal properties of steatite/ cordierite ceramics prepared by using natural raw materials. Journal of the European Ceramic Society, 2011, 31(14): 2741-2747.
DOI URL |
[6] |
AVILA P, MONTES M, MIRÓ E E. Monolithic reactors for environmental applications: a review on preparation technologies. Chemical Engineering Journal, 2005, 109(1/2/3): 11-36.
DOI URL |
[7] |
DAS R N, MADHUSOODANA C D, OKADA K, Rheological studies on cordierite honeycomb extrusion. Journal of the European Ceramic Society, 2002, 22(16): 2893-2900.
DOI URL |
[8] |
LIANG Q, LI D, YANG G. Rapid fabrication of diamond-structured ceramic photonic crystals with graded dielectric constant and its controllable stop band properties. Ceramics International, 2013, 39(1): 153-157.
DOI URL |
[9] |
MELCHELS F P W, FEIJEN J, GRIJPMA D W. A review on stereolithography and its applications in biomedical engineering. Biomaterials, 2010, 31(24): 6121-6130.
DOI URL |
[10] |
ZHOU W, LI D, CHEN Z. Direct fabrication of an integral ceramic mould by stereolithography. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2010, 224(2): 237-243.
DOI URL |
[11] |
ZOCCA A, COLOMBO P, GOMES C M, et al. Additive manufacturing of ceramics: issues, potentialities, and opportunities. Journal of the American Ceramic Society, 2015, 98(7): 1983-2001.
DOI URL |
[12] |
CHEN Z, LI Z, LI J, et al. 3D printing of ceramics: a review. Journal of the European Ceramics Society, 2019, 39(4): 661-687.
DOI URL |
[13] |
CHEN Z, LI D, ZHOU W. Process parameters appraisal of fabricating ceramic parts based on stereolithography using the Taguchi method. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226(7): 1249-1258.
DOI URL |
[14] |
LIU Y, CHEN Z, LI J, et al. 3D printing of ceramic cellular structures for potential nuclear fusion application. Additive Manufacturing, 2020, 35: 101348.
DOI URL |
[15] |
RASAKI S A, XIONG D, XIONG S, et al. Photopolymerization- based additive manufacturing of ceramics: a systematic review. Journal of Advanced Ceramics, 2021, 10(3): 442-471.
DOI URL |
[16] |
LIU C, XU F, LIU Y, et al. High mass loading ultrathick porous Li4Ti5O12 electrodes with improved areal capacity fabricated via low temperature direct writing. Electrochimica Acta, 2019, 314: 81-88.
DOI URL |
[17] |
WU Z, HUAN Z, ZHU Y, et al. 3D printing and characterization of microsphere hydroxyapatite scaffolds. Journal of Inorganic Materials, 2021, 36(6): 601-607.
DOI URL |
[18] |
CHEN Z, BRANDON N. Inkjet printing and nanoindentation of porous alumina multilayers. Ceramics International, 2016, 42(7): 8316-8324.
DOI URL |
[19] |
CHEN Z, OUYANG J, LIANG W, et al. Development and characterizations of novel aqueous-based LSCF suspensions for inkjet printing. Ceramics International, 2018, 44(11): 13381-13388.
DOI URL |
[20] |
ZHANG L, YANG X, XU X, et al. 3D printed zirconia ceramics via fused deposit modeling and its mechanical properties. Journal of Inorganic Materials, 2021, 36(4): 436-442.
DOI |
[21] |
LIU S, LI M, WU J, et al. Preparation of high-porosity Al2O3 ceramic foams via selective laser sintering of Al2O3 poly-hollow microspheres. Ceramics International, 2020, 46(4): 4240-4247.
DOI URL |
[22] |
FERRAGE L, BERTRAND G, LENORMAND P. Dense yttria- stabilized zirconia obtained by direct selective laser sintering. Additive Manufacturing, 2018, 21: 472-478.
DOI URL |
[23] |
MINASYAN T, LIU L, AGHAYAN M, et al. A novel approach to fabricate Si3N4 by selective laser melting. Ceramics International, 2018, 44(12): 13689-13694.
DOI URL |
[24] |
CHEN Z, LI J, LIU C, et al. Preparation of high solid loading and low viscosity ceramic slurries for photopolymerization-based 3D printing. Ceramics International, 2019, 45(9): 11549-11557.
DOI URL |
[25] |
SHUAI X, ZENG Y, LI P, et al. Fabrication of fine and complex lattice structure Al2O3 ceramic by digital light processing 3D printing technology. Journal of Materials Science, 2020, 55: 6771-6782.
DOI URL |
[26] | LI H, SONG L, SUN J, et al. Stereolithography-fabricated zirconia dental prostheses: concerns based on clinical requirements. Journal of Advances in Applied Ceramics, 2020, 119(5/6): 236-243. |
[27] |
FENG C, ZHANG C, HE R, et al. Additive manufacturing of hydroxyapatite bioceramic scaffolds: dispersion, digital light processing, sintering, mechanical properties, and biocompatibility. Journal of Advanced Ceramics, 2020, 9: 360-373.
DOI URL |
[28] |
HE R, DING G, ZHANG K, et al. Fabrication of SiC ceramic architectures using stereolithography combined with precursor infiltration and pyrolysis. Ceramics International, 2019, 45(11): 14006-14014.
DOI URL |
[29] |
ZHANG C, LUO Z, LIU C, et al. Dimensional retention of photocured ceramic units during 3D printing and sintering processes. Ceramics International, 2021, 47(8): 11097-11108.
DOI URL |
[30] |
CHEN Z, LIU C, LI J, et al. Mechanical properties and microstructures of 3D printed bulk cordierite parts. Ceramics International, 2019, 45(15): 19257-19267.
DOI URL |
[1] | WEI Zhifan, CHEN Guoqing, ZU Yufei, LIU Yuan, LI Minghao, FU Xuesong, ZHOU Wenlong. ZrB2-HfSi2 Ceramics: Microstructure and Formation Mechanism of Core-rim Structure [J]. Journal of Inorganic Materials, 2025, 40(7): 817-825. |
[2] | YANG Yan, ZHANG Faqiang, MA Mingsheng, WANG Yongzhe, OUYANG Qi, LIU Zhifu. Low Temperature Sintering of ZnAl2O4 Ceramics with CuO-TiO2-Nb2O5 Composite Oxide Sintering Aid [J]. Journal of Inorganic Materials, 2025, 40(6): 711-718. |
[3] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[4] | GOU Yanzi, KANG Weifeng, WANG Pengren. Influence of Sintering Conditions on Preparation of Nearly Stoichiometric SiC Fibers with Highly Crystalline Microstructure [J]. Journal of Inorganic Materials, 2025, 40(4): 405-414. |
[5] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[6] | FAN Wenkai, YANG Xiao, LI Honghua, LI Yong, LI Jiangtao. Pressureless Sintering of (Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7 High-entropy Ceramic and Its High Temperature CMAS Corrosion Resistance [J]. Journal of Inorganic Materials, 2025, 40(2): 159-167. |
[7] | WANG Zhixiang, CHEN Ying, PANG Qingyang, LI Xin, WANG Genshui. Sintering Behaviour and Dielectric Properties of MnCO3-doped MgO-based Ceramics [J]. Journal of Inorganic Materials, 2025, 40(1): 97-103. |
[8] | ZHANG Jinghui, LU Xiaotong, MAO Haiyan, TIAN Yazhou, ZHANG Shanlin. Effect of Sintering Additives on Sintering Behavior and Conductivity of BaZr0.1Ce0.7Y0.2O3-δ Electrolytes [J]. Journal of Inorganic Materials, 2025, 40(1): 84-90. |
[9] | WANG Kanglong, YIN Jie, CHEN Xiao, WANG Li, LIU Xuejian, HUANG Zhengren. Effect of Particle Grading on Properties of Silicon Carbide Ceramics Prepared by Selective Laser Sintering Printing Combined with Solid-phase Sintering at Atmospheric Pressure [J]. Journal of Inorganic Materials, 2024, 39(7): 754-760. |
[10] | LIU Yan, QIN Xianpeng, GAN Lin, ZHOU Guohong, ZHANG Tianjin, WANG Shiwei, CHEN Hetuo. Preparation of Sub-micron Spherical Y2O3 Particles and Transparent Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 691-696. |
[11] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[12] | ZHENG Bin, KANG Kai, ZHANG Qing, YE Fang, XIE Jing, JIA Yan, SUN Guodong, CHENG Laifei. Preparation and Thermal Stability of Ti3SiC2 Ceramics by Polymer Derived Ceramics Method [J]. Journal of Inorganic Materials, 2024, 39(6): 733-740. |
[13] | ZHENG Yawen, ZHANG Cuiping, ZHANG Ruijie, XIA Qian, RU Hongqiang. Fabrication of Boron Carbide Ceramic Composites by Boronic Acid Carbothermal Reduction and Silicon Infiltration Reaction Sintering [J]. Journal of Inorganic Materials, 2024, 39(6): 707-714. |
[14] | LÜ Zhaoyang, XU Yong, YANG Jiuyan, TU Guangsheng, TU Bingtian, WANG Hao. Effect of MgF2 Additive on Preparation and Optical Properties of MgAl1.9Ga0.1O4 Transparent Ceramics [J]. Journal of Inorganic Materials, 2024, 39(5): 531-538. |
[15] | ZHANG Tingting, WANG Fangyuan, LIU Changyou, ZHANG Guorong, LÜ Jiahui, SONG Yuchen, JIE Wanqi. Hydrothermal-sintering Preparation of Cr2+:ZnSe/ZnSe Nanotwins with Core-shell Structure [J]. Journal of Inorganic Materials, 2024, 39(4): 409-415. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||