Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (1): 79-85.DOI: 10.15541/jim20210212
Special Issue: 【信息功能】介电、铁电、压电材料(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
LI Sheng(), SONG Guoqiang, ZHANG Yuanyuan(
), TANG Xiaodong
Received:
2021-03-29
Revised:
2021-04-20
Published:
2022-01-20
Online:
2021-07-20
Contact:
ZHANG Yuanyuan, associate professor. E-mail: yyzhang@ee.ecnu.edu.cn
About author:
LI Sheng (1996-), male, Master candidate. E-mail: 51181213007@stu.ecnu.edu.cn
Supported by:
CLC Number:
LI Sheng, SONG Guoqiang, ZHANG Yuanyuan, TANG Xiaodong. Preparation and Physical Property of BTO-based Multiferroic Ceramics[J]. Journal of Inorganic Materials, 2022, 37(1): 79-85.
Sample | EC/(kV·cm-1) | Pr/(μC·cm-2) | Ps/(μC·cm-2) |
---|---|---|---|
BTO | 4.3 | 13.24 | 28.7 |
BTMNO | 1.22 | 5.85 | 19.1 |
BTNNO | 0.67 | 0.55 | 15.5 |
BTCNO | 1.85 | 6.02 | 19.9 |
Table 1 Physical parameters in the electric hysteresis loop
Sample | EC/(kV·cm-1) | Pr/(μC·cm-2) | Ps/(μC·cm-2) |
---|---|---|---|
BTO | 4.3 | 13.24 | 28.7 |
BTMNO | 1.22 | 5.85 | 19.1 |
BTNNO | 0.67 | 0.55 | 15.5 |
BTCNO | 1.85 | 6.02 | 19.9 |
Fig. 5 Isothermal magnetization of BTO series ceramics at 300 K (a-d) and isothermal magnetization loops after subtracting the paramagnetic contributions of samples (e) Colourful figures are available on website
[1] |
DONG S, LIU J M, CHEONG S W, et al. Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Advances in Physics, 2015, 64(5/6):519-626.
DOI URL |
[2] |
EERENSTEIN W, MATHUR N D, SCOTT J F. Multiferroic and magnetoelectric materials. Nature, 2006, 442(7104):759-765.
DOI URL |
[3] |
KIMURA T, GOTO T, SHINTANI H, et al. Magnetic control of ferroelectric polarization. Nature, 2003, 426(6962):55-58.
DOI URL |
[4] |
CORASANITI M, BARONE P, NUCARA A, et al. Electronic bands and optical conductivity of the Dzyaloshinsky-Moriya multiferroic Ba2CuGe2O7. Physical Review B, 2017, 96(8):085115.
DOI URL |
[5] | CHEN L, JIA Y, ZHAO J, et al. Strong piezoelectric-catalysis in barium titanate/carbon hybrid nanocomposites for dye wastewater decomposition. Journal of Colloid & Interface Science, 2021, 586:758-765. |
[6] |
XU X, WU Z, XIAO L, et al. Strong pieo-electro-chemical effect of piezoelectric BaTiO3 nanofibers for vibration-catalysis. Journal of Alloys and Compounds, 2018, 762:915-921.
DOI URL |
[7] |
XIA Y, JIA Y, QIAN W, et al. Pyroelectrically induced pyro- electro-chemical catalytic activity of BaTiO3 nanofibers under room-temperature cold-hot cycle excitations. Metals, 2017, 7(4):122.
DOI URL |
[8] |
WANG K F, LIU J M, REN Z F. Multiferroicity: the coupling between magnetic and polarization orders. Advances in Physics, 2009, 58(4):321-448.
DOI URL |
[9] |
BENEDEK N A, FENNIE C J. Why are there so few perovskite ferroelectrics? The Journal of Physical Chemistry C, 2013, 117(26):13339-13349.
DOI URL |
[10] |
HILL N A. Why are there so few magnetic ferroelectrics? The Journal of Physical Chemistry B, 2000, 104(29):6694-6709.
DOI URL |
[11] |
HIROYUKI N, KATAYAMA-YOSHIDA H. Theoretical prediction of magnetic properties of Ba(Ti1-xMx)O3 (M=Sc,V,Cr,Mn,Fe,Co, Ni,Cu). Japanese Journal of Applied Physics, 2001, 40(Part 2, 12B):L1355-L1358.
DOI URL |
[12] |
SONG C, WANG C, LIU X, et al. Room temperature ferromagnetism in cobalt-doped LiNbO3 single crystalline films. Crystal Growth & Design, 2009, 9(2):1235-1239.
DOI URL |
[13] |
REN Z, XU G, WEI X, et al. Room-temperature ferromagnetism in Fe-doped PbTiO3 nanocrystals. Applied Physics Letters, 2007, 91(6):063106.
DOI URL |
[14] |
KUMAR M, YADAV K L. Observation of room temperature magnetoelectric coupling in a Ni substituted Pb1-xNixTiO3 system. Journal of Applied Physics, 2007, 102(7):076107.
DOI URL |
[15] |
DANG N V, THE-LONG P, THANH T D, et al. Structural phase separation and optical and magnetic properties of BaTi1-xMnxO3 multiferroics. Journal of Applied Physics, 2012, 111(11):113913.
DOI URL |
[16] |
ZHOU L, ZHANG Y, LI S, et al. Fe doping effect on the structural, ferroelectric and magnetic properties of polycrystalline BaTi1-xFexO3 ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31(17):14487-14493.
DOI URL |
[17] |
RUBAVATHI P E, VENKIDU L, BABU M V G, et al. Structure, morphology and magnetodielectric investigations of BaTi1-xFexO3-δ ceramics. Journal of Materials Science-Materials in Electronics, 2019, 30(6):5706-5717.
DOI URL |
[18] |
RANI A, KOLTE J, VADLA S S, et al. Structural, electrical, magnetic and magnetoelectric properties of Fe doped BaTiO3 ceramics. Ceramics International, 2016, 42(7):8010-8016.
DOI URL |
[19] |
GHEORGHIU F, CIOMAGA C E, SIMENAS M, et al. Preparation and functional characterization of magnetoelectric Ba(Ti1-xFex)O3-x/2 ceramics. Application for a miniaturized resonator antenna. Ceramics International, 2018, 44(17):20862-20870.
DOI URL |
[20] | PHAN T L, THANG P D, HO T A, et al. et al. Local geometric and electronic structures and origin of magnetism in Co-doped BaTiO3 multiferroics. Journal of Applied Physics, 2015, 117(17): 17D904. |
[21] |
PHONG P T, HUY B T, LEE Y I, et al. Polymorphs and dielectric properties of BaTi1-xNixO3. Journal of Alloys and Compounds, 2014, 583:237-243.
DOI URL |
[22] |
DAS S, GHARA S, MAHADEVAN P, et al. Designing a lower band gap bulk ferroelectric material with a sizable polarization at room temperature. ACS Energy Letters, 2018, 3(5):1176-1182.
DOI URL |
[23] |
ZHENG D, DENG H, SI S, et al. Modified structural, optical, magnetic and ferroelectric properties in (1-x)BaTiO3- xBaCo0.5Nb0.5O3-δ ceramics. Ceramics International, 2020, 46(5):6073-6078.
DOI URL |
[24] |
N V, DUNG N T, PHONG P T, et al. Effect of Fe3+ substitution on structural, optical and magnetic properties of barium titanate ceramics. Physica B: Condensed Matter, 2015, 457:103-107.
DOI URL |
[25] |
ZHENG D, DENG H, PAN Y, et al. Modified multiferroic properties in narrow bandgap (1-x)BaTiO3-xBaNb1/3Cr2/3O3-δ ceramics. Ceramics International, 2020, 46(17):26823-26828.
DOI URL |
[26] |
DAS S K, MISHRA R N, ROUL B K. Magnetic and ferroelectric properties of Ni doped BaTiO3. Solid State Communications, 2014, 191:19-24.
DOI URL |
[27] |
VENKATESWARAN U D, NAIK V M, NAIK R. High-pressure Raman studies of polycrystalline BaTiO3. Physical Review B, 1998, 58(21):14256-14260.
DOI URL |
[28] |
ROBINS L H, KAISER D L, ROTTER L D, et al. Investigation of the structure of barium titanate thin films by Raman spectroscopy. Journal of Applied Physics, 1994, 76(11):7487-7498.
DOI URL |
[29] |
POKORNÝ J, PASHA U M, BEN L, et al. Use of Raman spectroscopy to determine the site occupancy of dopants in BaTiO3. Journal of Applied Physics, 2011, 109(11):114110.
DOI URL |
[30] |
ZAYTSEVA I V, PUGACHEV A M, OKOTRUB K A, et al. Residual mechanical stresses in pressure treated BaTiO3 powder. Ceramics International, 2019, 45(9):12455-12460.
DOI URL |
[31] |
SHUAI Y, ZHOU S, BÜRGER D, et al. Decisive role of oxygen vacancy in ferroelectric versus ferromagnetic Mn-doped BaTiO3 thin films. Journal of Applied Physics, 2011, 109(8):084105.
DOI URL |
[32] |
COEY J M D, VENKATESAN M, FITZGERALD C B. Donor impurity band exchange in dilute ferromagnetic oxides. Nature Materials, 2005, 4(2):173-179.
DOI URL |
[33] |
COEY J M D, DOUVALIS A P, FITZGERALD C B, et al. Ferromagnetism in Fe-doped SnO2 thin films. Applied Physics Letters, 2004, 84(8):1332-1334.
DOI URL |
[34] |
MOSTARI M S, HAQUE M J, RAHMAN ANKUR S, et al. Effect of mono-dopants (Mg2+) and co-dopants (Mg2+, Zr4+) on the dielectric, ferroelectric and optical properties of BaTiO3 ceramics. Materials Research Express, 2020, 7(6):066302.
DOI URL |
[35] | WENG B, XIAO Z, MENG W, et al. Bandgap engineering of barium bismuth niobate double perovskite for photoelectronchemical water oxidation. Advanced Energy Materals, 2017, 7(9):1602260. |
[36] |
YANG F, YANG L, AI C, et al. Tailoring bandgap of perovskite BaTiO3 by transition metals Co-doping for visible-light photoelectrical applications: a first-principles study. Nanomaterials, 2018, 8(7):455.
DOI URL |
[37] |
YIN J, ZOU Z, YE J. A novel series of the new visible-light- driven photocatalysts MCo1/3Nb2/3O3 (M=Ca, Sr, and Ba) with special electronic structures. The Journal of Physical Chemistry B, 2003, 107(21):4936-4941.
DOI URL |
[1] | SHEN Hao, CHEN Qianqian, ZHOU Boxiang, TANG Xiaodong, ZHANG Yuanyuan. Preparation and Energy Storage Properties of A-site La/Sr Co-doped PbZrO3 Thin Films [J]. Journal of Inorganic Materials, 2024, 39(9): 1022-1028. |
[2] | CHENG Jun, ZHANG Jiawei, QIU Pengfei, CHEN Lidong, SHI Xun. Preparation and Thermoelectric Transport Properties of P-doped β-FeSi2 [J]. Journal of Inorganic Materials, 2024, 39(8): 895-902. |
[3] | ZHAO Zhihan, GUO Peng, WEI Jing, CUI Li, LIU Shanze, ZHANG Wenlong, CHEN Rende, WANG Aiying. Ti Doped Diamond Like Carbon Films: Piezoresistive Properties and Carrier Transport Behavior [J]. Journal of Inorganic Materials, 2024, 39(8): 879-886. |
[4] | LI Jiaqi, LI Xiaosong, LI Xuanhe, ZHU Xiaobing, ZHU Aimin. Transition Metal-doped Manganese Oxide: Synthesis by Warm Plasma and Electrocatalytic Performance for Oxygen Evolution Reaction [J]. Journal of Inorganic Materials, 2024, 39(7): 835-844. |
[5] | SHI Ruijian, LEI Junwei, ZHANG Yi, XIE Aiwen, ZUO Ruzhong. Linear-like NaNbO3-based Lead-free Relaxor Antiferroelectric Ceramics with Excellent Energy-storage and Charge-discharge Properties [J]. Journal of Inorganic Materials, 2024, 39(4): 423-431. |
[6] | TAM YU Puy Mang, XU Yu, GAO Quanhao, ZHOU Haiqiong, ZHANG Zhen, YIN Hao, LI Zhen, LÜ Qitao, CHEN Zhenqiang, MA Fengkai, SU Liangbi. Spectroscopic Properties and Optical Clusters in Erbium-doped CaF2, SrF2 and PbF2 Crystals [J]. Journal of Inorganic Materials, 2024, 39(3): 330-336. |
[7] | LIU Song, ZHANG Faqiang, LUO Jin, LIU Zhifu. 0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3 Ferroelectric Thin Films: Preparation and Energy Storage [J]. Journal of Inorganic Materials, 2024, 39(3): 291-298. |
[8] | LI Qianyuan, LI Jiwei, ZHANG Yuhan, LIU Yankang, MENG Yang, CHU Yu, ZHU Yijia, XU Nuoyan, ZHU Liang, ZHANG Chuanxiang, TAO Haijun. Enhanced Photovoltaic Performance of Perovskite Solar Cells by PbTiO3 Modification and Polarization Treatment [J]. Journal of Inorganic Materials, 2024, 39(11): 1205-1211. |
[9] | LI Qiushi, YIN Guangming, LÜ Weichao, WANG Huaiyao, LI Jinglin, YANG Hongguang, GUAN Fangfang. Preparation of Na+/g-C3N4 Materials and Their Photocatalytic Degradation Mechanism on Methylene Blue [J]. Journal of Inorganic Materials, 2024, 39(10): 1143-1150. |
[10] | DAI Le, LIU Yang, GAO Xuan, WANG Shuhao, SONG Yating, TANG Mingmeng, DMITRY V Karpinsky, LIU Lisha, WANG Yaojin. Self-polarization Achieved by Compositionally Gradient Doping in BiFeO3 Thin Films [J]. Journal of Inorganic Materials, 2024, 39(1): 99-106. |
[11] | LI Guanglan, WANG Tianyu, LIU Yichen, LU Zhongfa. Layered NiFeCo-LDH-Ti6C3.75 Catalyst: Preparation and Performance for Oxygen Evolution Reaction [J]. Journal of Inorganic Materials, 2023, 38(7): 823-829. |
[12] | KONG Guoqiang, LENG Mingzhe, ZHOU Zhanrong, XIA Chi, SHEN Xiaofang. Sb Doped O3 Type Na0.9Ni0.5Mn0.3Ti0.2O2 Cathode Material for Na-ion Battery [J]. Journal of Inorganic Materials, 2023, 38(6): 656-662. |
[13] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[14] | YANG Yingkang, SHAO Yiqing, LI Bailiang, LÜ Zhiwei, WANG Lulu, WANG Liangjun, CAO Xun, WU Yuning, HUANG Rong, YANG Chang. Enhanced Band-edge Luminescence of CuI Thin Film by Cl-doping [J]. Journal of Inorganic Materials, 2023, 38(6): 687-692. |
[15] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||