Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (8): 893-903.DOI: 10.15541/jim20200632
Special Issue: 【虚拟专辑】污染物吸附水处理(2020~2021)
• RESEARCH LETTER • Previous Articles
ZHOU Fan1,2(), BI Hui1, HUANG Fuqiang1,2,3(
)
Received:
2020-11-05
Revised:
2020-12-08
Published:
2021-08-20
Online:
2020-12-10
Contact:
HUANG Fuqiang, professor. E-mail: huangfq@mail.sic.ac.cn
About author:
ZHOU Fan (1994-), male, Master candidate. E-mail: 1175106021@qq.com
Supported by:
CLC Number:
ZHOU Fan, BI Hui, HUANG Fuqiang. Ultra-large Specific Surface Area Activated Carbon Synthesized from Rice Husk with High Adsorption Capacity for Methylene Blue[J]. Journal of Inorganic Materials, 2021, 36(8): 893-903.
Carbon | YP-80 | RHAC600 | RHAC700 | RHAC800 | RHAC900 |
---|---|---|---|---|---|
ID: IG | 0.997 | 0.992 | 1.017 | 1.025 | 1.020 |
SSABET/(m2•g-1) | 1310 | 2380 | 3173 | 3366 | 3600 |
Pore volumetotal/(cm3•g-1) | 0.816 | 1.352 | 1.733 | 1.829 | 3.164 |
Micropore volume/(cm3•g-1) | 0.516 | 0.393 | 0.429 | 0.606 | 0.537 |
Adsorption limit/(mg•g-1) | 525 | 851 | 935 | 919 | 983 |
Carbon | YP-80 | RHAC600 | RHAC700 | RHAC800 | RHAC900 |
---|---|---|---|---|---|
ID: IG | 0.997 | 0.992 | 1.017 | 1.025 | 1.020 |
SSABET/(m2•g-1) | 1310 | 2380 | 3173 | 3366 | 3600 |
Pore volumetotal/(cm3•g-1) | 0.816 | 1.352 | 1.733 | 1.829 | 3.164 |
Micropore volume/(cm3•g-1) | 0.516 | 0.393 | 0.429 | 0.606 | 0.537 |
Adsorption limit/(mg•g-1) | 525 | 851 | 935 | 919 | 983 |
Biomass | Activator | Pore volume/(cm3•g-1) | SSABET/(m2•g-1) | qm/(mg•g-1) |
---|---|---|---|---|
Tobacco stalks[ | ZnCl2+Microwave | 0.45 | 684.68 | 123.45 |
Dipterocarpus alatus[ | ZnCl2/500 ℃ | 0.473 | 843 | 269.3 |
Sugar beet pulp[ | H3PO4/450 ℃ | 0.445 | 1029.3 | 250.0 |
Palm kernel shell[ | ZnCl2/550 ℃ | 0.571 | 1058 | 225.3 |
Rice by-products[ | H3PO4/450 ℃ | 0.612/0.607 | 814/1000 | 246.9/213.7 |
Viscose fibers[ | Steam/900 ℃ | 0.54/0.76 | 1284/1614 | 256.1/325.8 |
Cotton[ | H3PO4+Microwave | 0.98 | 1370 | 476.2 |
Cashew nut shell[ | ZnCl2/400 ℃ | 0.973 | 1478 | 476 |
Arundo donax[ | ZnCl2/400 ℃ | 1.113 | 1784 | 416.7 |
Sawdust[ | KOH/1000 ℃ | 1.27 | 2254 | 303.03 |
Bamboo shoots[ | KHCO3/700 ℃/800 ℃ | 0.73/1.25 | 1476/2271 | 458 |
Bagasse/Cluster stalks[ | KOH/1300 ℃ | 0.82/1.4 | 1861/2662 | 714.3/925.9 |
This work | KOH/800 ℃/900 ℃ | 1.829/3.164 | 3366/3600 | 919/983 |
Biomass | Activator | Pore volume/(cm3•g-1) | SSABET/(m2•g-1) | qm/(mg•g-1) |
---|---|---|---|---|
Tobacco stalks[ | ZnCl2+Microwave | 0.45 | 684.68 | 123.45 |
Dipterocarpus alatus[ | ZnCl2/500 ℃ | 0.473 | 843 | 269.3 |
Sugar beet pulp[ | H3PO4/450 ℃ | 0.445 | 1029.3 | 250.0 |
Palm kernel shell[ | ZnCl2/550 ℃ | 0.571 | 1058 | 225.3 |
Rice by-products[ | H3PO4/450 ℃ | 0.612/0.607 | 814/1000 | 246.9/213.7 |
Viscose fibers[ | Steam/900 ℃ | 0.54/0.76 | 1284/1614 | 256.1/325.8 |
Cotton[ | H3PO4+Microwave | 0.98 | 1370 | 476.2 |
Cashew nut shell[ | ZnCl2/400 ℃ | 0.973 | 1478 | 476 |
Arundo donax[ | ZnCl2/400 ℃ | 1.113 | 1784 | 416.7 |
Sawdust[ | KOH/1000 ℃ | 1.27 | 2254 | 303.03 |
Bamboo shoots[ | KHCO3/700 ℃/800 ℃ | 0.73/1.25 | 1476/2271 | 458 |
Bagasse/Cluster stalks[ | KOH/1300 ℃ | 0.82/1.4 | 1861/2662 | 714.3/925.9 |
This work | KOH/800 ℃/900 ℃ | 1.829/3.164 | 3366/3600 | 919/983 |
Sample | qe(exp)/(mg•g-1) | q1(cal)/(mg•g-1) | Percentual difference, (qe-q1)/% | k1/min-1 | |
---|---|---|---|---|---|
YP-80 | 525 | 19.8 | 96.23 | 0.0192 | |
RHAC600 | 851 | 438.8 | 48.44 | 0.0614 | |
RHAC700 | 935 | 85.9 | 90.81 | 0.0231 | |
RHAC800 | 919 | 259 | 71.82 | 0.0433 | |
RHAC900 | 983 | 89 | 90.95 | 0.0347 |
Sample | qe(exp)/(mg•g-1) | q1(cal)/(mg•g-1) | Percentual difference, (qe-q1)/% | k1/min-1 | |
---|---|---|---|---|---|
YP-80 | 525 | 19.8 | 96.23 | 0.0192 | |
RHAC600 | 851 | 438.8 | 48.44 | 0.0614 | |
RHAC700 | 935 | 85.9 | 90.81 | 0.0231 | |
RHAC800 | 919 | 259 | 71.82 | 0.0433 | |
RHAC900 | 983 | 89 | 90.95 | 0.0347 |
Sample | qe (exp)/ (mg•g-1) | q2(cal)/ (mg•g-1) | Percentual difference (qe-q2)/% | k2/(g•mg-1•min-1) |
---|---|---|---|---|
YP-80 | 525 | 526.3 | -0.25 | 0.0090 |
RHAC600 | 851 | 833.3 | 2.08 | 0.0006 |
RHAC700 | 935 | 833.3 | 10.88 | 0.0018 |
RHAC800 | 919 | 909.1 | 1.08 | 0.0007 |
RHAC900 | 983 | 1000 | -1.73 | 0.0025 |
Sample | qe (exp)/ (mg•g-1) | q2(cal)/ (mg•g-1) | Percentual difference (qe-q2)/% | k2/(g•mg-1•min-1) |
---|---|---|---|---|
YP-80 | 525 | 526.3 | -0.25 | 0.0090 |
RHAC600 | 851 | 833.3 | 2.08 | 0.0006 |
RHAC700 | 935 | 833.3 | 10.88 | 0.0018 |
RHAC800 | 919 | 909.1 | 1.08 | 0.0007 |
RHAC900 | 983 | 1000 | -1.73 | 0.0025 |
RHBC | RHAC600 | RHAC700 | RHAC800 | RHAC900 | |
---|---|---|---|---|---|
C | 19.48 | 95.18 | 97.21 | 94.16 | 95.63 |
O | 35.59 | 4.82 | 2.79 | 3.15 | 2.28 |
Si | 40.73 | 0 | 0 | 0 | 0 |
Ca | 0.1 | 0 | 0 | 0 | 0 |
RHBC | RHAC600 | RHAC700 | RHAC800 | RHAC900 | |
---|---|---|---|---|---|
C | 19.48 | 95.18 | 97.21 | 94.16 | 95.63 |
O | 35.59 | 4.82 | 2.79 | 3.15 | 2.28 |
Si | 40.73 | 0 | 0 | 0 | 0 |
Ca | 0.1 | 0 | 0 | 0 | 0 |
RH | RHBC | RHAC600 | RHAC700 | RHAC800 | RHAC900 | |
---|---|---|---|---|---|---|
Before/mg | 2502.0 | 1002.4 | 148.1 | 76.3 | 88.7 | 53.9 |
After/mg | 375.0 | 330.0 | 0 | 0 | 0 | 0 |
Ash content/% | 14.99 | 32.92 | — | — | — | — |
RH | RHBC | RHAC600 | RHAC700 | RHAC800 | RHAC900 | |
---|---|---|---|---|---|---|
Before/mg | 2502.0 | 1002.4 | 148.1 | 76.3 | 88.7 | 53.9 |
After/mg | 375.0 | 330.0 | 0 | 0 | 0 | 0 |
Ash content/% | 14.99 | 32.92 | — | — | — | — |
[1] |
MENYA E, OLUPOT P W, STORZ H, et al. Production and performance of activated carbon from rice husks for removal of natural organic matter from water: a review. Chemical Engineering Research and Design , 2018, 129:271-296.
DOI URL |
[2] |
YAGUB M T, SEN T K, AFROZE S, et al. Dye and its removal from aqueous solution by adsorption: a review. Advances in Colloid and Interface Science , 2014, 209:172-84.
DOI URL |
[3] |
ZHOU Y, LU J, ZHOU Y, et al. Recent advances for dyes removal using novel adsorbents: a review. Environmental Pollution , 2019, 252:352-365.
DOI URL |
[4] |
SILVA L A D, BORGES S M S, PAULINO P N, et al. Methylene blue oxidation over iron oxide supported on activated carbon derived from peanut hulls. Catalysis Today , 2017, 289:237-248.
DOI URL |
[5] |
GUO Z, XIAO Z, REN G, et al. Natural tea-leaf-derived, ternary- doped 3D porous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Research , 2016, 9(5):1244-1255.
DOI URL |
[6] |
DUAN X, SRINIVASAKANNAN C, WANG X, et al. Synthesis of activated carbon fibers from cotton by microwave induced H3PO4 activation. Journal of the Taiwan Institute of Chemical Engineers , 2017, 70:374-381.
DOI URL |
[7] |
TAN I A W, AHMAD A L, HAMEED B H. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials , 2008, 154(1-3):337-346.
DOI URL |
[8] | CHOMA J, OSUCHOWSKI L, MARSZEWSKI M, et al. Developing microporosity in Kevlar®-derived carbon fibers by CO2 activation for CO2 adsorption. Journal of CO2 Utilization , 2016, 16:17-22. |
[9] | LIU Q X, ZHOU Y R, WANG M, et al. Adsorption of methylene blue from aqueous solution onto viscose-based activated carbon fiber felts: Kinetics and equilibrium studies. Adsorption Science & Technology , 2019, 37(3-4):312-332. |
[10] |
PATAWAT C, SILAKATE K, CHUAN-UDOM S, et al. Preparation of activated carbon from Dipterocarpus alatus fruit and its application for methylene blue adsorption. RSC Advances , 2020, 10(36):21082-21091.
DOI URL |
[11] |
ZHU G, XING X, WANG J, ET AL. Effect of acid and hydrothermal treatments on the dye adsorption properties of biomass- derived activated carbon. Journal of Materials Science , 2017, 52(13):7664-7676.
DOI URL |
[12] |
LI D, YAN J, LIU Z, et al. Adsorption kinetic studies for removal of methylene blue using activated carbon prepared from sugar beet pulp. International Journal of Environmental Science and Technology , 2016, 13(7):1815-1822.
DOI URL |
[13] | MUDYAWABIKWA B, MUNGONDORI H H, TICHAGWA L, et al. Methylene blue removal using a low-cost activated carbon adsorbent from tobacco stems: kinetic and equilibrium studies. Water Science & Technology , 2017, 75(10):2390-2402. |
[14] |
MI B, WANG J, XIANG H, et al. Nitrogen self-doped activated carbons derived from bamboo shoots as adsorbent for methylene blue adsorption. Molecules , 2019, 24(16):3012.
DOI URL |
[15] |
WANG Z, SMITH A T, WANG W, et al. Versatile nanostructures from rice husk biomass for energy applications. Angewandte Chemie International Edition , 2018, 57(42):13722-13734.
DOI URL |
[16] |
CHEN Z, XU Y, SHIVKUMAR S. Microstructure and tensile properties of various varieties of rice husk. Journal of the Science of Food and Agriculture , 2018, 98(3):1061-1070.
DOI URL |
[17] |
CHEN Z, WANG X, XUE B, et al. Rice husk-based hierarchical porous carbon for high performance supercapacitors: The structure- performance relationship. Carbon , 2020, 161:432-444.
DOI URL |
[18] |
ISLAM M A, AHMED M J, KHANDAY W A, et al. Mesoporous activated carbon prepared from NaOH activation of rattan (Lacosperma secundiflorum) hydrochar for methylene blue removal. Ecotoxicology Environmental Safety , 2017, 138:279-285.
DOI URL |
[19] |
ISLAM M A, SABAR S, BENHOURIA A, et al. Nanoporous activated carbon prepared from karanj (Pongamia pinnata) fruit hulls for methylene blue adsorption. Journal of the Taiwan Institute of Chemical Engineers , 2017, 74:96-104.
DOI URL |
[20] |
BASTA A H, LOTFY V F, HASANIN M S, et al. Efficient treatment of rice byproducts for preparing high-performance activated carbons. Journal of Cleaner Production , 2019, 207:284-295.
DOI URL |
[21] |
HE X, LING P, YU M, et al. Rice husk-derived porous carbons with high capacitance by ZnCl2 activation for supercapacitors. Electrochimica Acta , 2013, 105:635-641.
DOI URL |
[22] |
LOZANO-CASTELLÓ D, CALO J M, CAZORLA-AMORÓS D, et al. Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen. Carbon , 2007, 45(13):2529-2536.
DOI URL |
[23] |
GAO Y, LI L, JIN Y, et al. Porous carbon made from rice husk as electrode material for electrochemical double layer capacitor. Applied Energy , 2015, 153:41-47.
DOI URL |
[24] |
LI C, HE D, HUANG Z H, et al. Hierarchical micro-/mesoporous carbon derived from rice husk by hydrothermal pre-treatment for high performance supercapacitor. Journal of The Electrochemical Society , 2018, 165(14):A3334-A3341.
DOI URL |
[25] |
SPAGNOLI A A, GIANNAKOUDAKIS D A, BASHKOVA S. Adsorption of methylene blue on cashew nut shell based carbons activated with zinc chloride: the role of surface and structural parameters. Journal of Molecular Liquids , 2017, 229:465-471.
DOI URL |
[26] |
VADIVELAN V, KUMAR K V. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. Journal of Colloid and Interface Science , 2005, 286(1):90-100.
DOI URL |
[27] |
ÜNER O. Hydrogen storage capacity and methylene blue adsorption performance of activated carbon produced from Arundo donax. Materials Chemistry and Physics , 2019, 237:121852.
DOI URL |
[28] |
ORLANDI G, CAVASOTTO J, MACHADO F R, et al. An adsorbent with a high adsorption capacity obtained from the cellulose sludge of industrial residues. Chemosphere , 2017, 169:171-180.
DOI URL |
[29] |
MAHMOUDI K, HOSNI K, HAMDI N, et al. Kinetics and equilibrium studies on removal of methylene blue and methyl orange by adsorption onto activated carbon prepared from date pits-A comparative study. Korean Journal of Chemical Engineering , 2014, 32(2):274-283.
DOI URL |
[1] | WU Guangyu, SHU Song, ZHANG Hongwei, LI Jianjun. Enhanced Styrene Adsorption by Grafted Lactone-based Activated Carbon [J]. Journal of Inorganic Materials, 2024, 39(4): 390-398. |
[2] | XIE Tian, SONG Erhong. Effect of Elastic Strains on Adsorption Energies of C, H and O on Transition Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(11): 1292-1300. |
[3] | CHAO Shaofei, XUE Yanhui, WU Qiong, WU Fufa, MUHAMMAD Sufyan Javed, ZHANG Wei. Efficient Potassium Storage through Ti-O-H-O Electron Fast Track of MXene Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(11): 1212-1220. |
[4] | CAI Mengyu, LI-YANG Hongmiao, YANG Caiyun, ZHOU Yuting, WU Hao. Activated Sludge Incineration Ash Derived Fenton-like Catalyst: Preparation and Degradation Performance on Methylene Blue [J]. Journal of Inorganic Materials, 2024, 39(10): 1135-1142. |
[5] | MA Xiaosen, ZHANG Lichen, LIU Yanchao, WANG Quanhua, ZHENG Jiajun, LI Ruifeng. 13X@SiO2: Synthesis and Toluene Adsorption [J]. Journal of Inorganic Materials, 2023, 38(5): 537-543. |
[6] | GUO Chunxia, CHEN Weidong, YAN Shufang, ZHAO Xueping, YANG Ao, MA Wen. Adsorption of Arsenate in Water by Zirconia-halloysite Nanotube Material [J]. Journal of Inorganic Materials, 2023, 38(5): 529-536. |
[7] | WANG Shiyi, FENG Aihu, LI Xiaoyan, YU Yun. Pb (II) Adsorption Process of Fe3O4 Supported Ti3C2Tx [J]. Journal of Inorganic Materials, 2023, 38(5): 521-528. |
[8] | YU Yefan, XU Ling, NI Zhongbing, SHI Dongjian, CHEN Mingqing. Prussian Blue Modified Biochar: Preparation and Adsorption of Ammonia Nitrogen from Sewage [J]. Journal of Inorganic Materials, 2023, 38(2): 205-212. |
[9] | LING Jie, ZHOU Anning, WANG Wenzhen, JIA Xinyu, MA Mengdan. Effect of Cu/Mg Ratio on CO2 Adsorption Performance of Cu/Mg-MOF-74 [J]. Journal of Inorganic Materials, 2023, 38(12): 1379-1386. |
[10] | TANG Ya, SUN Shengrui, FAN Jia, YANG Qingfeng, DONG Manjiang, KOU Jiahui, LIU Yangqiao. PEI Modified Hydrated Calcium Silicate Derived from Fly Ash and Its adsorption for Removal of Cu (II) and Catalytic Degradation of Organic Pollutants [J]. Journal of Inorganic Materials, 2023, 38(11): 1281-1291. |
[11] | WANG Mengtao, SUO Jun, FANG Dong, YI Jianhong, LIU Yichun, Olim RUZIMURADOV. Visible-light Catalytic Performance of ITO/TiO2 Nanotube Array Composite [J]. Journal of Inorganic Materials, 2023, 38(11): 1292-1300. |
[12] | DAI Jieyan, FENG Aihu, MI Le, YU Yang, CUI Yuanyuan, YU Yun. Adsorption Mechanism of NaY Zeolite Molecular Adsorber Coating on Typical Space Contaminations [J]. Journal of Inorganic Materials, 2023, 38(10): 1237-1244. |
[13] | WANG Hongning, HUANG Li, QING Jiang, MA Tengzhou, HUANG Weiqiu, CHEN Ruoyu. Mesoporous Organic-inorganic Hybrid Siliceous Hollow Spheres: Synthesis and VOCs Adsorption [J]. Journal of Inorganic Materials, 2022, 37(9): 991-1000. |
[14] | CHI Congcong, QU Panpan, REN Chaonan, XU Xin, BAI Feifei, ZHANG Danjie. Preparation of SiO2@Ag@SiO2@TiO2 Core-shell Structure and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(7): 750-756. |
[15] | LIU Cheng, ZHAO Qian, MOU Zhiwei, LEI Jiehong, DUAN Tao. Adsorption Properties of Novel Bismuth-based SiOCNF Composite Membrane for Radioactive Gaseous Iodine [J]. Journal of Inorganic Materials, 2022, 37(10): 1043-1050. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||