Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (4): 379-385.DOI: 10.15541/jim20200500
• RESEARCH PAPER • Previous Articles Next Articles
ZHANG Xiaoyan1,2,3(), LIU Xinyue1,2, YAN Jinhua1,2, GU Yaohang1,2, QI Xiwei3,4(
)
Received:
2020-08-28
Revised:
2020-09-29
Published:
2021-04-20
Online:
2020-10-30
Contact:
QI Xiwei, professor. E-mail: qixiwei@mail.neu.edu.cn
About author:
ZHANG Xiaoyan(1982-), female, associate professor. E-mail: xyaaa2005@163.com
Supported by:
CLC Number:
ZHANG Xiaoyan, LIU Xinyue, YAN Jinhua, GU Yaohang, QI Xiwei. Preparation and Property of High Entropy (La0.2Li0.2Ba0.2Sr0.2Ca0.2)TiO3 Perovskite Ceramics[J]. Journal of Inorganic Materials, 2021, 36(4): 379-385.
Fig. 3 SEM images of high entropy (La0.2Li0.2Ba0.2Sr0.2Ca0.2)TiO3 ceramic sintered at different temperatures (a) 1250 ℃; (b) 1300 ℃; (c) 1350 ℃; (d)1400 ℃; (e) 1450 ℃; (f) 1500 ℃
[1] | YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004,6(5):299-303. |
[2] | CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys. Materials Science Engineering A, 2004, 375-377(1):213-218. |
[3] | RANGANATHAN. Alloyed pleasures: multimetallic cocktails. Current Science, 2003,85(5):1404-1406. |
[4] | 王晓鹏, 孔凡涛. 高熵合金及其他高熵材料研究新进展. 航空材料学报, 2019,39(6):1-19. |
[5] |
ZHOU Y J, ZHANG Y, WANG Y L, et al. Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Applied Physics Letters, 2007,90(18):181904-1-3.
DOI URL |
[6] | ZHOU W, FU L M, LIU P, et al. Deformation stimulated precipitation of a single-phase CoCrFeMnNi high entropy alloy. Intermetallics, 2017,85:90-97. |
[7] | SZKLARZ Z, LEKKI J, BOBROWSKI P, et al. The effect of SiC nanoparticles addition on the electrochemical response of mechanically alloyed CoCrFeMnNi high entropy alloy. Materials Chemistry and Physics, 2018,215:385-392. |
[8] | 王睿鑫, 唐宇, 李永彦, 等. NbZrTiTa高熵合金的高温氧化行为. 稀有金属材料与工程, 2020,49(7):2417-2424. |
[9] | MISHRA K, SAHAY RAJESH P P, ROHIT R S. Alloying, magnetic and corrosion behavior of AlCrFeMnNiTi high entropy alloy. Journal of Materials Science, 2019,54(5):4433-4443. |
[10] | 陈克丕, 李泽民, 马金旭, 等. 高熵陶瓷材料研究进展与展望. 陶瓷学报, 2020,41(2):157-163. |
[11] | 顾俊峰, 邹冀, 张帆, 等. 高熵陶瓷材料研究进展. 中国材料进展, 2019,38(9):855-865. |
[12] | CHEN H, XIANG H M, DAI F Z, et al. High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C. Journal of Materials Science & Technology, 2019,35(8):1700-1705. |
[13] | GILD J, BRAUN J, KAUFMANN K, et al. A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2. Journal of Materiomics, 2019,5(3):337-343. |
[14] | QIN Y, LIU J X, LI F, et al. A high entropy silicide by reactive spark plasma sintering. Journal of Advanced Ceramics, 2019,8(1):148-152. |
[15] | LIU J X, SHEN X Q, WU Y, et al. Mechanical properties of hot-pressed high-entropy diboride-based ceramics. Journal of Advanced Ceramics, 2020,9(4):503-510. |
[16] |
ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides. Nature Communications, 2015,6:8485.
URL PMID |
[17] | SARKAR A, DJENADIC R, WANG D, et al. Rare earth and transition metal based entropy stabilised perovskite type oxides. Journal of the European Ceramic Society, 2018,38(5):2318-2327. |
[18] | CHEN K P, PEI X T, TANG L, et al. A five-component entropy-stabilized fluorite oxide. Journal of the European Ceramic Society, 2018,38(11):4161-4164. |
[19] | DABROWA J, STYGAR M, MIKUŁA A, et al. Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni)3O4 high entropy oxide characterized by spinel structure. Materials Letters, 2018,216:32-36. |
[20] | JIANG S C, HU T, GILD J, et al. A new class of high-entropy perovskite oxides. Scripta Materialia, 2018,142:116-120. |
[21] | DONG Y, REN K, LU Y H, et al. High-entropy environmental barrier coating for the ceramic matrix composites. Journal of the European Ceramic Society, 2019,39(7):2574-2579. |
[22] | LI F, ZHOU L, LIU J X, et al. High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials. Journal of Advanced Ceramics, 2019,8(4):576-582. |
[23] | ZHANG M, ZHANG X, DAS S, et al. High remanent polarization and temperature-insensitive ferroelectric remanent polarization in BiFeO3-based lead-free perovskite. Journal of Materials Chemistry C, 2019,7(34):10551-10560. |
[24] | ZHANG M, ZHANG X Y, QI X W, et al. Enhanced ferroelectric, magnetic and magnetoelectric properties of multiferroic BiFeO3-BaTiO3-LaFeO3 ceramics. Ceramics International, 2018,44(17):21269-21276. |
[25] | DONG G X, MA S W, DU J, et al. Dielectric properties and energy storage density in ZnO-doped Ba0.3Sr0.7TiO3 ceramics. Ceramics International, 2009,35(5):2069-2075. |
[26] | KREUER K D. Proton-conducting oxides. Annual Review of Materials Research, 2003,33(1):333-359. |
[27] | WRIGHTON M S, MORSE D L, ELLIS A B, et al. Photoassisted electrolysis of water by ultraviolet irradiation of an antimony doped stannic oxide electrode. ChemInform, 1976,7(13):44-48. |
[28] | JI L, MCDANIEL M D, WANG S J, et al. A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst. Nature Nanotechnology, 2015,10(1):84-90. |
[29] | BIESUZ M, FU S, DONG J, et al. High entropy Sr((Zr0.94Y0.06)0.2Sn0.2Ti0.2Hf0.2Mn0.2)O3-x perovskite synthesis by reactive spark plasma sintering. Journal of Asian Ceramic Societies, 2019,7(2):127-132. |
[30] | ZHOU S Y, PU Y P, ZHANG Q W, et al. Microstructure and dielectric properties of high entropy Ba(Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O3 perovskite oxides. Ceramics International, 2020,46(6):7430-7437. |
[31] | BÉRARDAN D, FRANGER S, MEENA A K, et al. Room temperature lithium superionic conductivity in high entropy oxides. Journal of Materials Chemistry A, 2016,4(24):9536-9541. |
[32] | ZHANG Y, YANG X, LIAW P K. Alloy design and properties optimization of high-entropy alloys. JOM, 2012,64(7):830-838. |
[33] | SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides . Acta Crystallographica Section A, Foundations of Crystallography, 1976,A32(5):751-767. |
[34] | PAN W G, CAO M H, HAO H, et al. Defect engineering toward the structures and dielectric behaviors of (Nb, Zn) co-doped SrTiO3 ceramics. Journal of the European Ceramic Society, 2020,40(1):49-55. |
[35] | MERINO N A, BARBERO B P, ELOY P, et al. La1-xCaxCoO3 perovskite-type oxides: identification of the surface oxygen species by XPS. Applied Surface Science, 2006,253(3):1489-1493. |
[36] | OSENCIAT N, BÉRARDAN D, DRAGOE D, et al. Charge compensation mechanisms in Li-substituted high-entropy oxides and influence on Li superionic conductivity. Journal of the American Ceramic Society, 2019,102(10):6156-6162. |
[37] | WU J G, WANG J. Ferroelectric and impedance behavior of La- and Ti-codoped BiFeO3 thin films. Journal of the American Ceramic Society, 2010,93(9):2795-2803. |
[38] | BAI Y L, ZHAO H, CHEN J, et al. Strong magnetoelectric coupling effect of BiFeO3/Bi5Ti3FeO15 bilayer composite films. Ceramics International, 2016,42(8):10304-10309. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | LI Wenyuan, XU Jianan, DENG Han'ao, CHANG Aimin, ZHANG Bo. Effect of V5+ Substitution on Microstructure and Microwave Dielectric Properties of LaTaO4 Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 697-703. |
[3] | HUANG Zipeng, JIA Wenxiao, LI Lingxia. Crystal Structure and Terahertz Dielectric Properties of (Ti0.5W0.5)5+ Doped MgNb2O6 Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 647-655. |
[4] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[5] | YIN Changzhi, CHENG Mingfei, LEI Weicheng, CAI Yiyang, SONG Xiaoqiang, FU Ming, LÜ Wenzhong, LEI Wen. Effect of Ga3+ Doping on Crystal Structure Evolution and Microwave Dielectric Properties of SrAl2Si2O8 Ceramic [J]. Journal of Inorganic Materials, 2025, 40(6): 704-710. |
[6] | XIONG Siyu, MO Chen, ZHU Xiaowei, ZHU Guobin, CHEN Deqin, LIU Laijun, SHI Xiaodong, LI Chunchun. Low-temperature Sintering of LiBxAl1-xSi2O6 Microwave Dielectric Ceramics with Ultra-low Permittivity [J]. Journal of Inorganic Materials, 2025, 40(5): 536-544. |
[7] | QU Jifa, WANG Xu, ZHANG Weixuan, ZHANG Kangzhe, XIONG Yongheng, TAN Wenyi. Enhanced Sulfur-resistance for Solid Oxide Fuel Cells Anode via Doping Modification of NaYTiO4 [J]. Journal of Inorganic Materials, 2025, 40(5): 489-496. |
[8] | LÜ Xinyi, XIANG Hengyang, ZENG Haibo. Long-range Ordered Films Boost Efficient Perovskite Quantum Dot Light-emitting Devices [J]. Journal of Inorganic Materials, 2025, 40(1): 111-112. |
[9] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[10] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
[11] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[12] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[13] | YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(4): 359-366. |
[14] | CHEN Zhengpeng, JIN Fangjun, LI Mingfei, DONG Jiangbo, XU Renci, XU Hanzhao, XIONG Kai, RAO Muming, CHEN Chuangting, LI Xiaowei, LING Yihan. Double Perovskite Sr2CoFeO5+δ: Preparation and Performance as Cathode Material for Intermediate-temperature Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2024, 39(3): 337-344. |
[15] | LIU Suolan, LUAN Fuyuan, WU Zihua, SHOU Chunhui, XIE Huaqing, YANG Songwang. In-situ Growth of Conformal SnO2 Layers for Efficient Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(12): 1397-1403. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||