Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (3): 277-282.DOI: 10.15541/jim20200254
Special Issue: 【虚拟专辑】钙钛矿材料(2020~2021)
• RESEARCH PAPER • Previous Articles Next Articles
DONG Zhengming1,2(), LI Xiu2,3, CHEN Chen2(
), CAO Minghe1(
), YI Zhiguo2
Received:
2020-05-13
Revised:
2020-09-04
Published:
2021-03-20
Online:
2020-10-10
Contact:
CAO Minghe, professor. E-mail: caominghe@whut.edu.cnAbout author:
DONG Zhengming(1996-), male, Master candidate. E-mail: dongzhengming_yzu@163.com
Supported by:
CLC Number:
DONG Zhengming, LI Xiu, CHEN Chen, CAO Minghe, YI Zhiguo. Photostriction of NBT-BNT Ceramics[J]. Journal of Inorganic Materials, 2021, 36(3): 277-282.
Fig. 3 Photostrictive performance of the NBT-BNT sample under different light conditions (shaded part indicates laser on state) (a), Stability of the photostrictive properties of the NBT-BNT sample under 5 kW/cm2 (b) and 15 kW/cm2 (c), photostriction coefficient of NBT-BNT sample under different light conditions (d), temperature change of the NBT-BNT sample (e) corresponding to Fig.(a), and thermal expansion curve of the NBT-BNT sample (f)
Compounds | Sample thickness | Illumination wavelength/nm | Light irradiance | λmax/% | η/(m3·W-1) |
---|---|---|---|---|---|
PLZT ceramics[ | 0.5 mm | 365 | 150 W/m2 | 0.01 | 3.3×10-10 |
BiFeO3 crystal[ | 90 µm | 365 | 326 W/m2 | 0.003 | 8.2×10-12 |
BiFeO3 film[ | 35 nm | 400 | 2 mJ/cm2 | 0.46 | 4×10-25 |
Silicon crystal[ | 0.5 mm | 248 | 127 mJ/cm2 | -6.4×10-4 | -3.7×10-20 |
Nematic elastomers[ | - | 365 | - | 20 | - |
SrRuO3 film[ | 40 nm | 532 | 62.5 W/cm2 | 1.12 | 7×10-16 |
CH3NH3PbBr3 crystal[ | 2.7 mm | 532 | 60 W/cm2 | -1.25 | -5.6×10-11 |
NBT-BNT | 0.2 mm | 405 | 25 kW/m2 | 0.21 | 1.68×10-11 |
0.2 mm | 520 | 25 kW/m2 | 0.13 | 1.10×10-11 | |
0.2 mm | 655 | 25 kW/m2 | 0.11 | 9.12×10-12 |
Table 1 Comparison of the photostrictive performances of the materials in literature and this work
Compounds | Sample thickness | Illumination wavelength/nm | Light irradiance | λmax/% | η/(m3·W-1) |
---|---|---|---|---|---|
PLZT ceramics[ | 0.5 mm | 365 | 150 W/m2 | 0.01 | 3.3×10-10 |
BiFeO3 crystal[ | 90 µm | 365 | 326 W/m2 | 0.003 | 8.2×10-12 |
BiFeO3 film[ | 35 nm | 400 | 2 mJ/cm2 | 0.46 | 4×10-25 |
Silicon crystal[ | 0.5 mm | 248 | 127 mJ/cm2 | -6.4×10-4 | -3.7×10-20 |
Nematic elastomers[ | - | 365 | - | 20 | - |
SrRuO3 film[ | 40 nm | 532 | 62.5 W/cm2 | 1.12 | 7×10-16 |
CH3NH3PbBr3 crystal[ | 2.7 mm | 532 | 60 W/cm2 | -1.25 | -5.6×10-11 |
NBT-BNT | 0.2 mm | 405 | 25 kW/m2 | 0.21 | 1.68×10-11 |
0.2 mm | 520 | 25 kW/m2 | 0.13 | 1.10×10-11 | |
0.2 mm | 655 | 25 kW/m2 | 0.11 | 9.12×10-12 |
Wavelength /nm | Δd/d | |||||
---|---|---|---|---|---|---|
(100) | (110) | (111) | (200) | (211) | (220) | |
405 | 0.0008 | 0.0003 | 0.0001 | 0.0003 | 0.0001 | 0.0005 |
520 | 0.0015 | 0.0005 | 0.0002 | 0.0002 | 0.0001 | 0.0003 |
655 | 0.0016 | 0.0004 | 0.0003 | 0.0002 | 0.0002 | 0.0003 |
Table 2 The displacement Δd/d of crystal planes of NBT- BNT samples under laser irradiation
Wavelength /nm | Δd/d | |||||
---|---|---|---|---|---|---|
(100) | (110) | (111) | (200) | (211) | (220) | |
405 | 0.0008 | 0.0003 | 0.0001 | 0.0003 | 0.0001 | 0.0005 |
520 | 0.0015 | 0.0005 | 0.0002 | 0.0002 | 0.0001 | 0.0003 |
655 | 0.0016 | 0.0004 | 0.0003 | 0.0002 | 0.0002 | 0.0003 |
Temperature /℃ | Δd/d | |||||
---|---|---|---|---|---|---|
(100) | (110) | (111) | (200) | (211) | (220) | |
50 | 0.0004 | 0.0001 | 0.0003 | 0.0001 | 0.0005 | 0.0009 |
100 | 0.0008 | 0.0004 | 0.0004 | 0.0004 | 0.001 | 0.0008 |
150 | 0.0009 | 0.0006 | 0.0006 | 0.0005 | 0.0012 | 0.0011 |
Table 3 The displacement Δd/d of crystal planes of NBT- BNT samples at different temperatures
Temperature /℃ | Δd/d | |||||
---|---|---|---|---|---|---|
(100) | (110) | (111) | (200) | (211) | (220) | |
50 | 0.0004 | 0.0001 | 0.0003 | 0.0001 | 0.0005 | 0.0009 |
100 | 0.0008 | 0.0004 | 0.0004 | 0.0004 | 0.001 | 0.0008 |
150 | 0.0009 | 0.0006 | 0.0006 | 0.0005 | 0.0012 | 0.0011 |
[1] |
FIGIELSKI T. Photostriction effect in germanium. Physica Status Solidi (b), 1961,1(4):306-316.
DOI URL |
[2] | UCHINO K, AIZAWA M. Photostrictive actuator using PLZT ceramics. Japanese Journal of Applied Physics, 1985,24(S3):139. |
[3] |
KUNDYS B, VIRET M, COLSON D, et al. Light-induced size changes in BiFeO3 crystals. Nature Materials, 2010,9:803.
DOI URL PMID |
[4] | KUNDYS B. Photostrictive materials. Applied Physics Reviews, 2015,2(1):011301. |
[5] | WEI T C, WANG H P, LI T Y, et al. Photostriction of CH3NH3PbBr3 perovskite crystals. Advanced Materials, 2017, 29(35):1701789. |
[6] |
WEI T C, WANG H P, LIU H J, et al. Photostriction of strontium ruthenate. Nature Communications, 2017,8:15018.
DOI URL PMID |
[7] |
UCHINO K, AIZAWA M, NOMURA L S. Photostrictive effect in (Pb, La)(Zr, Ti)O3. Ferroelectrics, 1985,64(1):199-208.
DOI URL |
[8] |
SCHICK D, HERZOG M, WEN H, et al. Localized excited charge carriers generate ultrafast inhomogeneous strain in the multiferroic BiFeO3. Physical Review Letters, 2014,112(9):097602.
DOI URL PMID |
[9] |
KUNDYS B, VIRET M, MENY C, et al. Wavelength dependence of photoinduced deformation in BiFeO3. Physical Review B, 2012,85(9):092301.
DOI URL |
[10] |
LAGOWSKI J, GATOS H C. Photomechanical effect in noncentrosymmetric semiconductors-CdS. Applied Physics Letters, 1972,20(1):14-16.
DOI URL |
[11] |
BUSCHERT J R, COLELLA R. Photostriction effect in silicon observed by time-resolved X-ray diffraction. Solid State Communications, 1991,80(6):419-422.
DOI URL |
[12] |
GAYATHRI S, SRIDEVI S, SINGH G, et al. Investigation of fast and sizeable photostriction effect in tellurium thin films using fiber Bragg grating sensors. Sensors and Actuators A-Physical, 2018,279:688-693.
DOI URL |
[13] |
YANG J C, LIOU Y D, TZENG W Y, et al. Ultrafast giant photostriction of epitaxial strontium iridate film with superior endurance. Nano Letters, 2018,18(12):7742-7748.
DOI URL PMID |
[14] |
PAILLARD C, XU B, DKHIL B, et al. Photostriction in ferroelectrics from density functional theory. Physical Review Letters, 2016,116(24):247401.
DOI URL PMID |
[15] |
YU Y, NAKANO M, IKEDA T. Directed bending of a polymer film by light. Nature, 2003,425(6954):145-145.
DOI URL PMID |
[16] |
WHITE T J, BROER D J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nature Materials, 2015,14:1087.
DOI URL PMID |
[17] |
YU Y. A light-fuelled wave machine. Nature, 2017,546:604.
DOI URL PMID |
[18] | ZHANG Z, REMSING R C, CHAKRABORTY H, et al. Light- induced dilation in nanosheets of charge-transfer complexes. Proceedings of the National Academy of Sciences, 2018,115(15):3776. |
[19] | MIRVAKILI S M, HUNTER I W. Artificial muscles: mechanisms, applications, and challenges. Advanced Materials, 2018,30(6):1704407. |
[20] |
TZOU H S, CHOU C S. Nonlinear opto-electromechanics and photodeformation of optical actuators. Smart Materials and Structures, 1996,5(2):230-235.
DOI URL |
[21] | UCHINO K. New applications of photostrictive ferroics. Materials Research Innovations, 1997,1(3):163-168. |
[22] |
POOSANAAS P, TONOOKA K, UCHINO K. Photostrictive actuators. Mechatronics, 2000,10(4):467-487.
DOI URL |
[23] | ZENG H, WASYLCZYK P, WIERSMA D S, et al. Light robots: bridging the gap between microrobotics and photomechanics in soft materials. Advanced Materials, 2018,30(24):1703554. |
[24] | WANG Z, LI K, HE Q, et al. A light-powered ultralight tensegrity robot with high deformability and load capacity. Advanced Materials, 2019,31(7):1806849. |
[25] |
MENG Z Y, KUMAR U, CROSS L E. Electrostriction in lead lanthanum zirconate-titanate ceramics. Journal of the American Ceramic Society, 1985,68(8):459-462.
DOI URL |
[26] | TAKAGI K, KIKUCHI S, LI J F, et al. Ferroelectric and photostrictive properties of fine-grained PLZT ceramics derived from mechanical alloying. Journal of the American Ceramic Society, 2004,87(8):1477-1482. |
[27] | MATZEN S, GUILLEMOT L, MAROUTIAN T, et al. Tuning ultrafast photoinduced strain in ferroelectric-based devices. Advanced Electronic Materials, 2019,5(6):1800709. |
[28] | XIAO H, DONG W, GUO Y, et al. Design for highly piezoelectric and visible/near-infrared photoresponsive perovskite oxides. Advanced Materials, 2019,31(4):1805802 |
[29] |
KUNDYS B, BUKHANTSEV Y, VASILIEV S, et al. Three terminal capacitance technique for magnetostriction and thermal expansion measurements. Review of Scientific Instruments, 2004,75(6):2192-2196.
DOI URL |
[30] |
FINKELMANN H, NISHIKAWA E, PEREIRA G G, et al. A new opto-mechanical effect in solids. Physical Review Letters, 2001,87(1):015501.
DOI URL PMID |
[31] |
CHEN C, LI X, LU T, et al. Reinvestigation of the photostrictive effect in lanthanum-modified lead zirconate titanate ferroelectrics. Journal of the American Ceramic Society, 2020,103(8):4074-4082.
DOI URL |
[1] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[2] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
[3] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[4] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[5] | YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(4): 359-366. |
[6] | CHEN Zhengpeng, JIN Fangjun, LI Mingfei, DONG Jiangbo, XU Renci, XU Hanzhao, XIONG Kai, RAO Muming, CHEN Chuangting, LI Xiaowei, LING Yihan. Double Perovskite Sr2CoFeO5+δ: Preparation and Performance as Cathode Material for Intermediate-temperature Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2024, 39(3): 337-344. |
[7] | ZHOU Zezhu, LIANG Zihui, LI Jing, WU Congcong. Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents [J]. Journal of Inorganic Materials, 2024, 39(11): 1197-1204. |
[8] | LI Qianyuan, LI Jiwei, ZHANG Yuhan, LIU Yankang, MENG Yang, CHU Yu, ZHU Yijia, XU Nuoyan, ZHU Liang, ZHANG Chuanxiang, TAO Haijun. Enhanced Photovoltaic Performance of Perovskite Solar Cells by PbTiO3 Modification and Polarization Treatment [J]. Journal of Inorganic Materials, 2024, 39(11): 1205-1211. |
[9] | DAI Xiaodong, ZHANG Luwei, QIAN Yicheng, REN Zhixin, CAO Huanqi, YIN Shougen. Controlling Vertical Composition Gradients in Sn-Pb Mixed Perovskite Solar Cells via Solvent Engineering [J]. Journal of Inorganic Materials, 2023, 38(9): 1089-1096. |
[10] | DONG Siyin, TIE Shujie, YUAN Ruihan, ZHENG Xiaojia. Research Progress on Low-dimensional Halide Perovskite Direct X-ray Detectors [J]. Journal of Inorganic Materials, 2023, 38(9): 1017-1030. |
[11] | WANG Run, XIANG Hengyang, ZENG Haibo. Carrier Balanced Distribution Regulation of Multi-emissive Centers in Tandem PeLEDs [J]. Journal of Inorganic Materials, 2023, 38(9): 1062-1068. |
[12] | WANG Machao, TANG Yangmin, DENG Mingxue, ZHOU Zhenzhen, LIU Xiaofeng, WANG Jiacheng, LIU Qian. Cs2Ag0.1Na0.9BiCl6:Tm3+ Double Perovskite: Coprecipitation Preparation and Near-infrared Emission [J]. Journal of Inorganic Materials, 2023, 38(9): 1083-1088. |
[13] | HAN Xu, YAO Hengda, LYU Mei, LU Hongbo, ZHU Jun. Application of Single-molecule Liquid Crystal Additives in CH(NH2)2PbI3 Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 1097-1102. |
[14] | FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 2023, 38(9): 1103-1109. |
[15] | CAI Kai, JIN Zhiwen. Photodetector Based on Two-dimensional Perovskite (PEA)2PbI4 [J]. Journal of Inorganic Materials, 2023, 38(9): 1069-1075. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||