Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (6): 635-640.DOI: 10.15541/jim20170349
Special Issue: 光伏材料
• Orginal Article • Previous Articles Next Articles
HE Xu1,2, REN Sheng-Qiang1, LI Chun-Xiu1, WU Li-Li1, ZHANG Jing-Quan1, DU Zheng3
Received:
2017-07-20
Revised:
2017-10-13
Published:
2018-06-20
Online:
2018-05-24
About author:
HE Xu. E-mail: hexu1225@126.com
Supported by:
CLC Number:
HE Xu, REN Sheng-Qiang, LI Chun-Xiu, WU Li-Li, ZHANG Jing-Quan, DU Zheng. Zn1-xMgxO: Band Structure and Simulation as Window Layer for CdTe Solar Cell by SCAPS Software[J]. Journal of Inorganic Materials, 2018, 33(6): 635-640.
Layer properties | FTO | CdS | Zn1-xMgxO | CdTe | ZnTe:Cu | ||||
---|---|---|---|---|---|---|---|---|---|
x=0 | x=0.0625 | x=0.125 | x=0.1875 | x=0.25 | |||||
ε/ε0 | 8.9 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 10.0 | 10.1 |
Nc/cm-3 | 5.2×1018 | 2.2×1018 | 4.0×1018 | 1017 | 9.0×1016 | 1016 | 1015 | 9.2×1017 | 1.5×1018 |
Nv/cm-3 | 1019 | 1.80×1019 | 9.00×1018 | 1018 | 9.00×1017 | 1017 | 1016 | 5.20×1018 | 1.16×1019 |
μn/(cm2˖V-1˖s-1) | 100 | 340 | 50 | 50 | 50 | 50 | 50 | 400 | 400 |
μp/(cm2˖V-1˖s-1) | 25 | 50 | 20 | 20 | 20 | 20 | 20 | 60 | 50 |
NA/cm-3 | 1020 | 1017 | 5.0×1017 | 1016 | 9.0×1015 | 1015 | 9.0×1014 | 1.5×1014 | 1.5×1020 |
Thickness/nm | 3.5×102 | 102 | 102 | 102 | 102 | 102 | 102 | 5.0×103 | 70.0 |
Table 1 Simulation parameters for the model of CdTe solar cells
Layer properties | FTO | CdS | Zn1-xMgxO | CdTe | ZnTe:Cu | ||||
---|---|---|---|---|---|---|---|---|---|
x=0 | x=0.0625 | x=0.125 | x=0.1875 | x=0.25 | |||||
ε/ε0 | 8.9 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 9.0 | 10.0 | 10.1 |
Nc/cm-3 | 5.2×1018 | 2.2×1018 | 4.0×1018 | 1017 | 9.0×1016 | 1016 | 1015 | 9.2×1017 | 1.5×1018 |
Nv/cm-3 | 1019 | 1.80×1019 | 9.00×1018 | 1018 | 9.00×1017 | 1017 | 1016 | 5.20×1018 | 1.16×1019 |
μn/(cm2˖V-1˖s-1) | 100 | 340 | 50 | 50 | 50 | 50 | 50 | 400 | 400 |
μp/(cm2˖V-1˖s-1) | 25 | 50 | 20 | 20 | 20 | 20 | 20 | 60 | 50 |
NA/cm-3 | 1020 | 1017 | 5.0×1017 | 1016 | 9.0×1015 | 1015 | 9.0×1014 | 1.5×1014 | 1.5×1020 |
Thickness/nm | 3.5×102 | 102 | 102 | 102 | 102 | 102 | 102 | 5.0×103 | 70.0 |
x | ΔEc/eV | Eg/eV | Ef/eV | χ/eV | φ/eV |
---|---|---|---|---|---|
0 | -0.03 | 3.32 | 2.48 | 4.53 | 5.31 |
0.0625 | 0.06 | 3.41 | 2.53 | 4.44 | 5.18 |
0.125 | 0.13 | 3.48 | 2.86 | 4.37 | 4.99 |
0.1875 | 0.29 | 3.65 | 2.91 | 4.21 | 4.84 |
0.25 | 0.47 | 3.82 | 3.02 | 4.03 | 4.83 |
Table 2 Bandgap, Fermi level, electron affinity and work function of ZMO with different x
x | ΔEc/eV | Eg/eV | Ef/eV | χ/eV | φ/eV |
---|---|---|---|---|---|
0 | -0.03 | 3.32 | 2.48 | 4.53 | 5.31 |
0.0625 | 0.06 | 3.41 | 2.53 | 4.44 | 5.18 |
0.125 | 0.13 | 3.48 | 2.86 | 4.37 | 4.99 |
0.1875 | 0.29 | 3.65 | 2.91 | 4.21 | 4.84 |
0.25 | 0.47 | 3.82 | 3.02 | 4.03 | 4.83 |
CdS | Zn1-xMgxO | |||||
---|---|---|---|---|---|---|
x=0 | x=0.0625 | x=0.125 | x=0.1875 | x=0.25 | ||
Voc/mV | 821 | 825 | 829 | 837 | 838 | 928 |
Jsc/(mA•cm-2) | 24.34 | 27.88 | 28.22 | 28.36 | 27.95 | 0.20 |
FF/% | 75.32 | 75.08 | 76.77 | 77.02 | 53.05 | 8.27 |
η/% | 15.06 | 17.28 | 17.98 | 18.29 | 12.42 | 0.01 |
Table 3 Performances of the CdS/CdTe and ZMO/CdTe solar cells with SCAPS
CdS | Zn1-xMgxO | |||||
---|---|---|---|---|---|---|
x=0 | x=0.0625 | x=0.125 | x=0.1875 | x=0.25 | ||
Voc/mV | 821 | 825 | 829 | 837 | 838 | 928 |
Jsc/(mA•cm-2) | 24.34 | 27.88 | 28.22 | 28.36 | 27.95 | 0.20 |
FF/% | 75.32 | 75.08 | 76.77 | 77.02 | 53.05 | 8.27 |
η/% | 15.06 | 17.28 | 17.98 | 18.29 | 12.42 | 0.01 |
[1] | T MAKINO T, Y SEGAWA Y, M KAWASAKI M,et al. Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy film. Appl. Phy . Lett., 2001, 78(9): 1237-1239. |
[2] | OZGUR U, ALIVOV YA I, LIU C,et al. A comprehensive review of ZnO materials and devices. Appl. Phys. Lett., 2005, 98(4): 1-11. |
[3] | OHTOMO A, KAWASAKI M, KOIDA T,et al. MgxZn1-xO as a II-VI widegap semiconductor alloy. Appl. Phys. Lett., 1998, 72(19): 2466-2468. |
[4] | KUMAR P, MALIK H K, GHOSH A,et al. Bandgap tuning inhighly c-axis oriented Zn1-xMgxO thin films. Appl. Phys. Lett., 2013, 102(22): 1-5. |
[5] | HUANG D, SHANG Y Z, CHEN D H.First-principles calcula- tion on the electronic structure and absorption spectrum of the wurtzite Zn1-xMgxO alloys. Acta. Phys. Sin., 2008, 57(02): 1078-1083. |
[6] | ZHANG X D, GUO M L, LIU C L,et al. First-principles investigation of electronic and optical properties in wurtzite Zn1-xMgxO. Eur. Phys. B, 2008, 62(4): 417-421. |
[7] | BAI L N, LING J S, JIANG Q.Optical and electronic properties of wurtzite structure Zn1-xMgxO alloys. Chin. Phys. Lett., 2011, 28(11): 1-4. |
[8] | THANGAVEL R, PRATHIBA G, NAANCI B A,et al. First principle calculations of the ground state properties and structural phase transformation for ternary chalcogenide semiconductor under high pressure. Computational Materials Science, 2007, 40(2): 193-200. |
[9] | FAN X F, SUN H D, SHEN Z X.A first-principle analysis on the phase stabilities, chemical bonds and band gaps of wurtzite structure AxZn1-xO alloys(A = Ca, Cd, Mg). Condens. Matter. Phys., 2008, 20(23): 221-235. |
[10] | WENG Z Z, ZHANG J M, HUANG Z G,et al. Effect of oxygen vacancy defect on the magnetic properties of Co-doped ZnO. Chin. Phys. Lett., 2011, 20(2): 422-427. |
[11] | CHO J Y, KIM I K, JUNG I O,et al. Effects of Mg doping concentration on the band gap of ZnO/MgxZn1-xO multilayer thin films prepared using pulsed laser deposition method. Journal of Electroceramics, 2009, 23(2/3/4): 442-446. |
[12] | TAKASHI MINEMOTO, YASUHIRO HASHIMOTO, TAKUYA SATOH,et al. Cu(In, Ga)Se2 solar cells with controlled conduction band offset of window/ Cu(In,Ga)Se2 layers. Journal of Applied Physics, 2001, 89(12): 8327-8330. |
[13] | 张静全. 硫化镉及相关化合物多晶薄膜与碲化镉太阳电池研究. 成都: 四川大学博士学位论文, 2002. |
[14] | SEGALL M D, LINDAN P J D, PROBERT M J,et al. First-principles simulation: ideas, illustrations and the CASTEP code. Phys. Condens. Matter., 2002, 14: 2717-2744. |
[15] | ZHAO Y, TRUHLAR D G.Construction of a generalized gradient approximation by restoring the density gradient expansion and enforcing a tight Lieb-Oxford bound.The Journal of Chemical Physics, 2008, 128(18): 1-8. |
[16] | FISCHER T H, ALMLOF J.General methods for geometry and wave function optimization.Journal of Physical Chemistry. Chem., 1992, 96(24): 9768-9774. |
[17] | HE X, HE L, TANG M J,et al. Effects of the vacancy point-defect on electronic structure and optical properties of LiF under high pressure: a first-principles investigation. Acta Phys. Sin., 2010, 60(2): 2-10. |
[18] | ODAKA H, IWATA S, TAGA N,et al. Study on electronic structure and optoelectronic properties of indium oxide by first-principles calculations. Japanese Journal of Applied Physics, 1997, 36(36): 5551-5554. |
[19] | SHEETZ R M, PONOMAREVA I, RICHTER E, ,et al. Defect-induced optical absorption in the visible range in ZnO nanowires. Physical Review B Condensed Matter. Defect-induced optical absorption in the visible range in ZnO nanowires. Physical Review B Condensed Matter., 2009, 80(19): 195314-1-4. |
[20] | SHUKLA G, KHARE A.Effect of Mg doping and substrate temperature on the properties of pulsed laser deposited epitaxial Zn1-xMgxO thin films. Appl. Phys. A, 2009, 96(3): 713-719. |
[21] | USUDA M, HAMADA N, KOTANI T,et al. All-electron GW calculation based on the LAPW method: application to wurtzite ZnO. Phys. Rev. B, 2002, 66(12): 1-10. |
[22] | BURGELMAN M, NOLLET P, DEGRAVE S.Modelling poly crystal line semiconductor solar cells.Thin Solid Films, 2000, 362(99): 527-532. |
[23] | HENINI M.Semiconductors: Data Handbook: Otfried Madelung(ed.); Springer, ISBN3-540-40488-0.Microelectronics Journal, 2004, 35(8): 685. |
[24] | GUO J, WANG W, LIU G,et al. Investigation of CdTe/CdS hetero- junction characteristics. Acta Energiae Solaris Sinica, 2003, 24(2): 269-272. |
[25] | CHEN Y L, WANG F G, WU L L.Properties of indium doped CdS thin films and their photovoltaic application in CdTe solar cells.Chalcogenide Letters, 2017, 14(1): 1-9. |
[26] | HUANG C H, CHUANG W J.Dependence of performance parameters of CdTe solar cells on semiconductor properties studied by using SCAPS-1D.Vacuum, 2015, 118: 32-37. |
[1] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
[2] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[3] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[4] | YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(4): 359-366. |
[5] | FEI Ling, LEI Lei, WANG Degao. Progress of Two-dimensional MXene in New-type Thin-film Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(2): 215-224. |
[6] | ZHOU Zezhu, LIANG Zihui, LI Jing, WU Congcong. Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents [J]. Journal of Inorganic Materials, 2024, 39(11): 1197-1204. |
[7] | LI Qianyuan, LI Jiwei, ZHANG Yuhan, LIU Yankang, MENG Yang, CHU Yu, ZHU Yijia, XU Nuoyan, ZHU Liang, ZHANG Chuanxiang, TAO Haijun. Enhanced Photovoltaic Performance of Perovskite Solar Cells by PbTiO3 Modification and Polarization Treatment [J]. Journal of Inorganic Materials, 2024, 39(11): 1205-1211. |
[8] | DAI Xiaodong, ZHANG Luwei, QIAN Yicheng, REN Zhixin, CAO Huanqi, YIN Shougen. Controlling Vertical Composition Gradients in Sn-Pb Mixed Perovskite Solar Cells via Solvent Engineering [J]. Journal of Inorganic Materials, 2023, 38(9): 1089-1096. |
[9] | HAN Xu, YAO Hengda, LYU Mei, LU Hongbo, ZHU Jun. Application of Single-molecule Liquid Crystal Additives in CH(NH2)2PbI3 Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 1097-1102. |
[10] | FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 2023, 38(9): 1103-1109. |
[11] | DING Tongshun, FENG Ping, SUN Xuewen, SHAN Husheng, LI Qi, SONG Jian. Perovskite Film Passivated by Fmoc-FF-OH and Its Photovoltaic Performance [J]. Journal of Inorganic Materials, 2023, 38(9): 1076-1082. |
[12] | ZHANG Lun, LYU Mei, ZHU Jun. Research Progress of Cs2AgBiBr6 Perovskite Solar Cell [J]. Journal of Inorganic Materials, 2023, 38(9): 1044-1054. |
[13] | CHEN Yu, LIN Puan, CAI Bing, ZHANG Wenhua. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 991-1004. |
[14] | DONG Yiman, TAN Zhan’ao. Research Progress of Recombination Layers in Two-terminal Tandem Solar Cells Based on Wide Bandgap Perovskite [J]. Journal of Inorganic Materials, 2023, 38(9): 1031-1043. |
[15] | ZHANG Wanwen, LUO Jianqiang, LIU Shujuan, MA Jianguo, ZHANG Xiaoping, YANG Songwang. Zirconia Spacer: Preparation by Low Temperature Spray-coating and Application in Triple-layer Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(2): 213-218. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||