Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (12): 1355-1359.DOI: 10.15541/jim20180142
• RESEARCH PAPER • Previous Articles Next Articles
ZHANG Biao, YANG Chang-An, SHI Pei
Received:
2018-04-02
Revised:
2018-04-26
Published:
2018-12-20
Online:
2018-11-27
About author:
ZHANG Biao. E-mail: yunzhuangzhb@163.com
Supported by:
CLC Number:
ZHANG Biao, YANG Chang-An, SHI Pei. Synthesis of Graphene/Hydroxyapatite Composite Bioceramics via Plasma Activated Sintering[J]. Journal of Inorganic Materials, 2018, 33(12): 1355-1359.
Fig. 1 Optical photos (insets) and SEM images of fracture surface of rGO/HAp composite bioceramics(a) Pure HAp; (b) 1wt% rGO/HAp; (c) 2wt% rGO/HAp; (d) 5wt% rGO/Hap
Fig. 4 SEM images and EDS spectra of fracture surface of 2wt% rGO/HAp composite bioceramics(a) SEM images; (b) EDS spectra; Elemental mappings of (c) Ca, (d) P, and (e) C elements
Fig. 5 LSCM images of mineralization products on the surface of rGO/HAp composite bioceramics(a) Pure HAp; (b) 1wt% rGO/HAp; (c) 2wt% rGO/HAp; (d) 5wt% rGO/HAp
Fig. 6 SEM images of deposition on the surface of 2wt% rGO/HAp composite bioceramics(a) Morphology of the surface sediment after mineralization; (b) Partial enlarged drawing
[1] | YU P, BAO R Y, SHI X J,et al. Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering. Carbohydrate Polymers, 2017, 155: 507-515. |
[2] | 徐晓宙.生物材料学. 北京: 科学出版社, 2006: 70-75, 159-169. |
[3] | DOU J H, ZHANG C Y, CHEN C Z,et al. Effects of sintering temperature on the properties of alumina/hydroxyapatite composites. Journal of Sol-Gel Science and Technology, 2017, 84(1): 23-27. |
[4] | HU Z, TONG G, LIN D,et al. Graphene-reinforced metal matrix nanocomposites-a review. Materials Science & Technology, 2016, 32(9): 930-953. |
[5] | GAO C D, LIU T T, SHUAI C J, et al. Enhancement mechanisms of graphene in nano-58S bioactive glass scaffold: mechanical Enhancement mechanisms of graphene in nano-58S bioactive glass scaffold: mechanical and biological performance. Scientific Reports, 2014, 4: 4712-1-10. |
[6] | GURUNATHAN S, KIM J H.Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials.International Journal of Nanomedicine, 2016, 11: 1927-1945. |
[7] | CRISAN L, CRISAN B, SORITAU O,et al. In vitro study of biocompatibility of a graphene composite with gold nanoparticles and hydroxyapatite on human osteoblasts. Journal of Applied Toxicology, 2015, 35(10): 1200-1210. |
[8] | LEE S K, KIM H, SHIM B S.Graphene: an emerging material for biological tissue engineering.Carbon Letters, 2013, 14(2): 63-75. |
[9] | ZHU K P, SUN J, YE S,et al. A novel hollow hydroxyapatite microspheres/chitosan composite drug carrier for controlled release. Journal of Inorganic Materials, 2016, 31(4): 434-442. |
[10] | LIN J, CHEN X Y, HUANG P.Graphene-based nanomaterials for bioimaging.Advanced Drug Delivery Reviews, 2016, 105: 242-254. |
[11] | WANG M H, ZHONG H B, FAN Y C,et al. Spark plasma sintering of bioactive Ca2MgSi2O7 ceramics. Journal of Inorganic Materials, 2017, 32(8): 825-830. |
[12] | ERIKSSON M, LIU Y, HU J F,et al. Transparent hydroxyapatite ceramics with nanograin structure prepared by high pressure spark plasma sintering at the minimized sintering temperature. Journal of the European Ceramic Society, 2011, 31(9): 1533-1540. |
[13] | HAN Y H, KIM B N, YOSHIDA H,et al. Spark plasma sintered superplastic deformed transparent ultrafine hydroxyapatite nanoceramics. Advances in Applied Ceramics, 2016, 115(3): 174-184. |
[14] | CHAMPION E.Sintering of calcium phosphate bioceramics.Acta Biomaterialia, 2013, 9(4): 5855-5875. |
[15] | ZHOU X J, ZHANG J L, WU H X,et al. Reducing graphene oxide via hydroxylamine: a simple and efficient route to graphene. Journal of Physical Chemistry C, 2011, 115(24): 11957-11961. |
[16] | LIU Y, ZHANG B, ZHANG L F,et al. Effect of hydrothermal etching processes on morphology and bioactivity of hydroxyapatite. Journal of Synthetic Crystals, 2016, 45(2): 441-446. |
[17] | 宋江凤. 羟基磷灰石陶瓷及其复合材料的烧结行为及力学性能研究. 长沙: 中南大学硕士学位论文, 2012. |
[18] | ZHANG L, LIU W W, YUE C G,et al. A tough graphene nanosheet/hydroxyapatite composite with improved in vitro, biocompatibility. Carbon, 2013, 61(11): 105-115. |
[19] | BAJPAI I, KIM D Y, HAN Y H, et al. Directional property evaluation of spark plasma sintered GNPs-reinforced hydroyapatite composites. Materials Letters, 2015, 158: 62-65. |
[20] | LIU Y, SHEN Z J.Dehydroxylation of hydroxyapatite in dense bulk ceramics sintered by spark plasma sintering.Journal of the European Ceramic Society, 2012, 32(11): 2691-2696. |
[21] | BONG S, KIM Y R, KIM I,et al. Graphene supported electrocatalysts for methanol oxidation. Electrochemistry Communications, 2010, 12(1): 129-131. |
[22] | BUZNIK V M, KOZLOVA S G, GABUDA S P,et al. Structural changes in carbonated hydroxyapatite at high temperatures as probed by 1H NMR and Raman spectroscopy. Doklady Chemistry, 2007, 413(1): 64-67. |
[23] | LOPES J H, MAGALHAE J A, GOUUEIA R F,et al. Hierarchical structures of β-TCP/45S5 bioglass hybrid scaffolds prepared by gelcasting. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 62: 10-23. |
[24] | LIU H Y, XI P X, XIE G Q,et al. Simultaneous reduction and surface functionalization of graphene oxide for hydroxyapatite mineralization. Journal of Physical Chemistry C, 2012, 116(5): 3334-3341. |
[25] | ZHU J T, WONG H M, YEUNG K W K,et al. Spark plasma sintered hydroxyapatite/graphite nanosheet and hydroxyapatite/ multiwalled carbon nanotube composites: mechanical and in vitro cellular properties. Advanced Engineering Materials, 2011, 13(4): 336-341. |
[1] | LI Honglan, ZHANG Junmiao, SONG Erhong, YANG Xinglin. Mo/S Co-doped Graphene for Ammonia Synthesis: a Density Functional Theory Study [J]. Journal of Inorganic Materials, 2024, 39(5): 561-568. |
[2] | SUN Chuan, HE Pengfei, HU Zhenfeng, WANG Rong, XING Yue, ZHANG Zhibin, LI Jinglong, WAN Chunlei, LIANG Xiubing. SiC-based Ceramic Materials Incorporating GNPs Array: Preparation and Mechanical Characterization [J]. Journal of Inorganic Materials, 2024, 39(3): 267-273. |
[3] | WANG Yanli, QIAN Xinyi, SHEN Chunyin, ZHAN Liang. Graphene Based Mesoporous Manganese-Cerium Oxides Catalysts: Preparation and Low-temperature Catalytic Reduction of NO [J]. Journal of Inorganic Materials, 2024, 39(1): 81-89. |
[4] | YANG Pingjun, LI Tiehu, LI Hao, DANG Alei. Effect of Graphene on Graphitization, Electrical and Mechanical Properties of Epoxy Resin Carbon Foam [J]. Journal of Inorganic Materials, 2024, 39(1): 107-112. |
[5] | DONG Yiman, TAN Zhan’ao. Research Progress of Recombination Layers in Two-terminal Tandem Solar Cells Based on Wide Bandgap Perovskite [J]. Journal of Inorganic Materials, 2023, 38(9): 1031-1043. |
[6] | NI Xiaoshi, LIN Ziyang, QIN Muyan, YE Song, WANG Deping. Bioactivity and Mechanical Property of PMMA Bone Cement: Effect of Silanized Mesoporous Borosilicate Bioglass Microspheres [J]. Journal of Inorganic Materials, 2023, 38(8): 971-977. |
[7] | WANG Xueyao, WANG Wugang, LI Yingwei, PENG Qi, LIANG Ruihong. Correlation between Constitutive Behavior and Fracture Performance of PZT Ceramics [J]. Journal of Inorganic Materials, 2023, 38(7): 839-844. |
[8] | CHEN Saisai, PANG Yali, WANG Jiaona, GONG Yan, WANG Rui, LUAN Xiaowan, LI Xin. Preparation and Properties of Green-yellow Reversible Electro-thermochromic Fabric [J]. Journal of Inorganic Materials, 2022, 37(9): 954-960. |
[9] | WEI Ziqin, XIA Xiang, LI Qin, LI Guorong, CHANG Jiang. Preparation and Properties of Barium Titanate/Calcium Silicate Composite Bioactive Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2022, 37(6): 617-622. |
[10] | SUN Ming, SHAO Puzhen, SUN Kai, HUANG Jianhua, ZHANG Qiang, XIU Ziyang, XIAO Haiying, WU Gaohui. First-principles Study on Interface of Reduced Graphene Oxide Reinforced Aluminum Matrix Composites [J]. Journal of Inorganic Materials, 2022, 37(6): 651-659. |
[11] | AN Lin, WU Hao, HAN Xin, LI Yaogang, WANG Hongzhi, ZHANG Qinghong. Non-precious Metals Co5.47N/Nitrogen-doped rGO Co-catalyst Enhanced Photocatalytic Hydrogen Evolution Performance of TiO2 [J]. Journal of Inorganic Materials, 2022, 37(5): 534-540. |
[12] | WANG Hongli, WANG Nan, WANG Liying, SONG Erhong, ZHAO Zhankui. Hydrogen Generation from Formic Acid Boosted by Functionalized Graphene Supported AuPd Nanocatalysts [J]. Journal of Inorganic Materials, 2022, 37(5): 547-553. |
[13] | DONG Shurui, ZHAO Di, ZHAO Jing, JIN Wanqin. Effect of Ionized Amino Acid on the Water-selective Permeation through Graphene Oxide Membrane in Pervaporation Process [J]. Journal of Inorganic Materials, 2022, 37(4): 387-394. |
[14] | JIANG Lili, XU Shuaishuai, XIA Baokai, CHEN Sheng, ZHU Junwu. Defect Engineering of Graphene Hybrid Catalysts for Oxygen Reduction Reactions [J]. Journal of Inorganic Materials, 2022, 37(2): 215-222. |
[15] | WU Jing, YU Libing, LIU Shuaishuai, HUANG Qiuyan, JIANG Shanshan, ANTON Matveev, WANG Lianli, SONG Erhong, XIAO Beibei. NiN4/Cr Embedded Graphene for Electrochemical Nitrogen Fixation [J]. Journal of Inorganic Materials, 2022, 37(10): 1141-1148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||