Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (1): 101-106.DOI: 10.15541/jim20160210
• Orginal Article • Previous Articles Next Articles
HUANG Rong-Tie1, 2, ZHENG Ming2, SUI Li-Fang1, 2, CAI Chuan-Bing1, HUANG Fu-Qiang2, 3
Received:
2016-03-31
Published:
2017-01-20
Online:
2016-12-15
About author:
HUANG Rong-Tie (1988– ), male, candidate of master degree. E-mail: huangrongtie@student.sic.ac.cn
Supported by:
CLC Number:
HUANG Rong-Tie, ZHENG Ming, SUI Li-Fang, CAI Chuan-Bing, HUANG Fu-Qiang. Synthesis and Physical Properties of Solar Material Cu1-xLixInSe2[J]. Journal of Inorganic Materials, 2017, 32(1): 101-106.
Fig. 1 (a) XRD patterns of Cu1-xLixInSe2 (x = 0-0.4) sample (The inset showing details of the XRD patterns around 70° and 72°) and (b) variation of the lattice parameters a and c
Fig. 4 Typical Nyquist plots of the electrochemical impedance spectra of Cu1-xLixInSe2 (x = 0-0.4) samplesThe inset shows the electrical resistivity with different doping contents at room temperature
Fig. 5 Diffuse reflectance spectra of Cu1-xLixInSe2 (x=0-0.4) samples (a) and the plots of (αhν)2 vs photon energy for Cu1-xLixInSe2 (x=0-0.4) samples (b)The inset shows the band gaps with different doping contents
[1] | ONUMA Y, TAKEUCHI K, ICHIKAWA S, et al. Preparation and characterization of CuInS2 thin films solar cells with large grain.Sol. Energ. Mat. Sol. C, 2001, 69(3): 261-269. |
[2] | JACKSON P, HARISKOS D, LOTTER E,et al.New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Prog. Photovoltaics, 2011, 19(7): 894-897. |
[3] | CHIANG C S, LEE W H, CHANG T W,et al.Improving conversion efficiency of co-electrodeposited CuInSe2 thin film solar cells with substrate and solution heating.J. Appl. Electrochem., 2015, 45(6): 549-556. |
[4] | SCHLENKER E, MERTENS V, PARISI J,et al. Schottky contact analysis of photovoltaic chalcopyrite thin film absorbers.Phys. Lett. A, 2007, 362(2/3): 229-233. |
[5] | JAKHMOLA P, AGARWAL G, JHA P K,et al.Growth and characterization of chalcopyrite CuInSe2 nanoparticles.Indian J. Phys., 2015, 89(3): 225-231. |
[6] | SCHOEN D T, PENG H L, CUI Y.CuInSe2 nanowires from facile chemical transformation of In2Se3 and their integration in single-nanowire devices.ACS Nano, 2013, 7(4): 3205-3211. |
[7] | BEREZNEV S, KOIS J, GOLOVTSOV I,et al.Electrodeposited (Cu-In-Se)/polypyrrole PV structures.Thin Solid Films, 2006, 511: 425-429. |
[8] | HANIAS M, ANAGNOSTOPOULOS A, KAMBAS K,et al.On the non-linear properties of Tlins2, Tlinse2, Tlinte2 ternary compounds.Physica B, 1989, 160(2): 154-160. |
[9] | WEI S H, ZHANG S B, ZUNGER A.Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties.Appl. Phys. Lett., 1998, 72(24): 3199-3201. |
[10] | HAN Q F, LIU Q, DUAN C H,et al.Effects of annealing on structural and electrical properties of CuInSe2 thin films prepared by hybrid sputtering/evaporation processes.J. Electron. Mater., 2011, 40(6): 1452-1456. |
[11] | WEI S H, ZHANG S B, ZUNGER A.Effects of Na on the electrical and structural properties of CuInSe2.J. Appl. Phys., 1999, 85(10): 7214-7218. |
[12] | WEISE S, NOWAK E, LENZ A,et al.Investigations of the system LiInSe2-CuInSe2.J. Cryst. Growth, 1996, 166(1-4): 718-721. |
[13] | SUNSHINE S A, KANG D, IBERS J A.A new low-temperature route to metal polychalcogenides - solid-state synthesis of K4Ti3S14, a novel one-dimensional compound.J. Am. Chem. Soc., 1987, 109(20): 6202-6204. |
[14] | DJELLAL L, OMEIRI S, BOUGUELIA A,et al.Photoelectrochemical hydrogen-evolution over p-type chalcopyrite CuInSe2.J. Alloys. Compd., 2009, 476(1/2): 584-589. |
[15] | KLIMOVA A M, ARIF M, TOLOCHKO O V,et al.Preparation and properties of copper indium diselenide CuInSe2.Glass Phys. Chem., 2006, 32(3): 325-329. |
[16] | KORZUN B V, FADZEYEVA A A, MAROZ I.Phase relations in the CuInSe2-CuBiSe2 semiconductor system.Phys. Status Solidi C, 2009, 6(5): 1047-1050. |
[17] | YANG C Y, WANG Y M, LI S T,et al.CuSbSe2-assisted sintering of CuInSe2 at low temperature.J. Mater. Sci., 2012, 47(20): 7085-7089. |
[18] | LIU M L, CHEN I W, HUANG F Q,et al.Improved thermoelectric properties of Cu-doped quaternary chalcogenides of Cu2CdSnSe4.Adv. Mater., 2009, 21(37): 3808-3812. |
[19] | PARKES J, TOMLINSO.RD, HAMPSHIR M J.Crystal data for CuInSe2.J. Appl. Crystallogr., 1973, 6(Oct1): 414-416. |
[20] | LI Y L, FAN W L, SUN H G,et al.Computational insight into the effect of monovalent cations on the electronic, optical, and lattice dynamic properties of XInSe2(X = Cu, Ag, Li).J. Appl. Phys., 2011, 109(11): 113535. |
[21] | MATSUSHITA H, ENDO S, IRIE T.Effects of oxygen doping on bulk properties of CuInSe2 crystals.Jpn. J. Appl. Phys., 1992, 31(9A): 2687-2688. |
[22] | ROY S, GUHA P, KUNDU S N, et al.Characterization of Cu(In,Ga)Se2 films by Raman scattering.Mater. Chem. Phys., 2002, 73(1): 24-30. |
[23] | RINCON C, RAMIREZ F J.Lattice-vibrations of CuInSe2 and CuGaSe2 by Raman microspectrometry.J. Appl. Phys., 1992, 72(9): 4321-4324. |
[24] | DAS K, PANDA S K, CHAUDHURI S.Fabrication of nanostructured CuInS2 thin films by ion layer gas reaction method. Appl. Surf. Sci., 2007, 253(11): 5166-5172. |
[25] | SPANIER J E, ROBINSON R D, ZHENG F,et al. Size-dependent properties of CeO2-y nanoparticles as studied by Raman scattering.Physical Review B, 2001, 64(24): 245407. |
[26] | KANATZIDIS M G.New directions in synthetic solid state chemistry: Chalcophosphate salt fluxes for discovery of new multinary solids.Curr. Opin. Solid St. Mater. Sci., 1997, 2(2): 139-149. |
[27] | CHIOU B S, LIN S T, DUH J G,et al.Equivalent-circuit model in grain-boundary barrier layer capacitors.Journal of the American Ceramic Society, 1989, 72(10): 1967-1975. |
[28] | SCHON J H.Extrinsic doping of CuGaSe2 single crystals.J. Phys. D. Appl. Phys., 2000, 33(3): 286-291. |
[29] | VARGAS W E, NIKLASSON G A.Applicability conditions of the Kubelka-Munk theory.Appl. Optics, 1997, 36(22): 5580-5586. |
[30] | ALONSO M I, WAKITA K, PASCUAL J,et al.Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2.Physical Review B, 2001, 63(7): 075203. |
[31] | WEI S H, ZUNGER A.Band offsets and optical bowings of chalcopyrites and Zn-Based Ii-Vi alloys. J. Appl. Phys., 1995, 78(6): 3846-3856. |
[1] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
[2] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[3] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[4] | YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(4): 359-366. |
[5] | FEI Ling, LEI Lei, WANG Degao. Progress of Two-dimensional MXene in New-type Thin-film Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(2): 215-224. |
[6] | ZHOU Zezhu, LIANG Zihui, LI Jing, WU Congcong. Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents [J]. Journal of Inorganic Materials, 2024, 39(11): 1197-1204. |
[7] | LI Qianyuan, LI Jiwei, ZHANG Yuhan, LIU Yankang, MENG Yang, CHU Yu, ZHU Yijia, XU Nuoyan, ZHU Liang, ZHANG Chuanxiang, TAO Haijun. Enhanced Photovoltaic Performance of Perovskite Solar Cells by PbTiO3 Modification and Polarization Treatment [J]. Journal of Inorganic Materials, 2024, 39(11): 1205-1211. |
[8] | DAI Xiaodong, ZHANG Luwei, QIAN Yicheng, REN Zhixin, CAO Huanqi, YIN Shougen. Controlling Vertical Composition Gradients in Sn-Pb Mixed Perovskite Solar Cells via Solvent Engineering [J]. Journal of Inorganic Materials, 2023, 38(9): 1089-1096. |
[9] | HAN Xu, YAO Hengda, LYU Mei, LU Hongbo, ZHU Jun. Application of Single-molecule Liquid Crystal Additives in CH(NH2)2PbI3 Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 1097-1102. |
[10] | FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 2023, 38(9): 1103-1109. |
[11] | DING Tongshun, FENG Ping, SUN Xuewen, SHAN Husheng, LI Qi, SONG Jian. Perovskite Film Passivated by Fmoc-FF-OH and Its Photovoltaic Performance [J]. Journal of Inorganic Materials, 2023, 38(9): 1076-1082. |
[12] | ZHANG Lun, LYU Mei, ZHU Jun. Research Progress of Cs2AgBiBr6 Perovskite Solar Cell [J]. Journal of Inorganic Materials, 2023, 38(9): 1044-1054. |
[13] | CHEN Yu, LIN Puan, CAI Bing, ZHANG Wenhua. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 991-1004. |
[14] | DONG Yiman, TAN Zhan’ao. Research Progress of Recombination Layers in Two-terminal Tandem Solar Cells Based on Wide Bandgap Perovskite [J]. Journal of Inorganic Materials, 2023, 38(9): 1031-1043. |
[15] | ZHANG Wanwen, LUO Jianqiang, LIU Shujuan, MA Jianguo, ZHANG Xiaoping, YANG Songwang. Zirconia Spacer: Preparation by Low Temperature Spray-coating and Application in Triple-layer Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(2): 213-218. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||