Journal of Inorganic Materials ›› 2016, Vol. 31 ›› Issue (9): 915-922.DOI: 10.15541/jim20160017
• Orginal Article • Previous Articles Next Articles
WANG Heng1, 2, ZHAI Guang-Mei1, 2, ZHANG Ji-Tao1, YANG Yong-Zhen1, LIU Xu-Guang1, 3, LI Xue-Min1, XU Bing-She1
Received:
2016-01-06
Revised:
2016-03-18
Published:
2016-09-20
Online:
2016-08-29
About author:
WANG Heng. E-mail: whtyut@foxmail.com
Supported by:
CLC Number:
WANG Heng, ZHAI Guang-Mei, ZHANG Ji-Tao, YANG Yong-Zhen, LIU Xu-Guang, LI Xue-Min, XU Bing-She. PbS Quantum Dots: Size, Ligand Dependent Energy Level Structures and Their Effects on the Performance of Heterojunction Solar Cells[J]. Journal of Inorganic Materials, 2016, 31(9): 915-922.
Fig. 1 Absorption spectra and morphology of PbS QDs (a) Absorption spectra of PbS QDs with different sizes; (b) Absorption spectra of PbS QD-films after TBAI ligand exchange; (c) TEM image of colloidal PbS QDs with average size of 4.5 nm; (d) Size distribution of PbS QDs with an average size of 4.5 nm measured by dynamic light scattering
Fig. 4 (a) Cyclic voltammetry curve of ferrocene in acetonitrile solution, (b) Cyclic voltammetry curves of 3.9 nm PbS QDs capped by OA and TBAI; The energy level diagrams of (c) as-synthesized PbS QDs with OA ligands and (d) PbS QDs after ligand exchange with TBAI
Fig. 5 Schematic diagram (a) of the PbS/TiO2 heterojunction solar cell, AFM images of (b) TiO2 compact layer, (c) mesoporous TiO2 nanoparticle layer and (d) PbS QD film passivated by TBAI
Fig. 6 (a) Light current density-voltage curves and (b) dark current density-voltage curves of the PbS QDs/TiO2 heterojunction solar cells made of different sizes of QDs
Size/nm | Voc/V | Jsc/(mA·cm-2) | FF/% | η/% |
---|---|---|---|---|
2.6 | 0.43 | 11.0 | 25 | 1.18 |
3.1 | 0.37 | 13.7 | 29 | 1.47 |
3.9 | 0.35 | 15.4 | 43 | 2.32 |
4.5 | 0.33 | 6.93 | 35 | 0.80 |
Table 1 Parameters of solar cells made of different sizes of PbS QDs with TBAI ligands
Size/nm | Voc/V | Jsc/(mA·cm-2) | FF/% | η/% |
---|---|---|---|---|
2.6 | 0.43 | 11.0 | 25 | 1.18 |
3.1 | 0.37 | 13.7 | 29 | 1.47 |
3.9 | 0.35 | 15.4 | 43 | 2.32 |
4.5 | 0.33 | 6.93 | 35 | 0.80 |
Fig. 7 Energy level diagram (a) of the materials used in PbS/TiO2 heterojunction solar cells and schematic diagram of the energy levels in the heterojunction devices made of (b) 3.9 nm PbS QDs and (c) 4.5 nm PbS QDs.
[1] | BAKUEVA L, MUSIKHINET S, HINES M A, et al.Size-tunable infrared (1000-1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer.Appl. Phys. Lett., 2003, 82(17): 2895-2897. |
[2] | ELLINGSON R J, BEARD M C, JOHNSON J C, et al.Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots.Nano Lett., 2005, 5(5): 865-871. |
[3] | SEMONIN O E, LUTHER J M, CHOI S, et al.Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell.Science, 2011, 334(6062): 1530-1533. |
[4] | ZHAI G M, CHURCH C P, BREEZE A J, et al. Quantum dot PbS0.9Se0.1/TiO2 heterojunction solar cells. Nanotechnology, 2012, 23(40): 405401-1-7. |
[5] | KEULEYAN S, LHUILLIER E, BRAJUSKOVIC V, et al.Mid- infrared HgTe colloidal quantum dot photodetectors.Nat. Photonics, 2011, 5(8): 489-493. |
[6] | SUN L F, CHOI J J, STACHNIK D, et al.Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control.Nat. Nanotechnol., 2012, 7(6): 369-373. |
[7] | LIU Y, GIBBS M, PERKINS C L, et al.Robust, functional nanocrystal solids by infilling with atomic layer deposition.Nano Lett., 2011, 11(12): 5349-5355. |
[8] | BISRI S Z, DEGOLI E, SPALLANZANI N, et al.Determination of the electronic energy levels of colloidal nanocrystals using field- effect transistors and ab-initio calculations.Adv. Mater., 2014, 26(32): 5639-5645. |
[9] | ZHANG X P, LAN Z, CHEN L, et al.Preparation and photovoltaic performance of SnS sensitized nanocrystallite TiO2 photoanode.J. Inorg. Mater., 2013, 28(10): 1093-1097. |
[10] | ZHAI G M, BEZRYADINA A, BREEZE A J, et al. Air stability of TiO2/PbS colloidal nanoparticle solar cells and its impact on power efficiency. Appl. Phys. Lett., 2011,99(6): 063512-1-3. |
[11] | KRAMER I J, SARGENT E H.The architecture of colloidal quantum dot solar cells: materials to devices.Chem. Rev., 2014, 114(1): 863-882. |
[12] | CAREY G H, ABDELHADY A L, NING Z J, et al.Colloidal quantum dot solar cells.Chem. Rev., 2015, 115(23): 12732-12763. |
[13] | MA W L, LUTHER J M, ZHENG H M, et al.Photovoltaic devices employing ternary PbSxSe1-x nanocrystals.Nano Lett., 2009, 9(4): 1669-1703. |
[14] | KRAMER I J, ZHITOMIRSKY D, BASS J D, et al.Ordered nanopillar structured electrodes for depleted bulk heterojunction colloidal quantum dot solar cells.Adv. Mater., 2012, 24(17): 2315-2319. |
[15] | TANG J, LIU H, ZHITOMIRSKY D, et al.Quantum junction solar cells.Nano Lett., 2012, 12(9): 4889-4894. |
[16] | ZHANG J B, GAO J B, MILLER E M, et al.Diffusion-controlled synthesis of PbS and PbSe quantum dots with in situ halide passivation for quantum dot solar cells.ACS Nano, 2014, 8(1): 614-622. |
[17] | DISSANAYAKE D M N M, LUTZ T, CURRY R J, et al. Measurement and validation of PbS nanocrystal energy levels. Appl. Phys. Lett., 2008,93(4): 043501-1-3. |
[18] | BARKHOUSE D A R, DEBNATH R, KRAMER I J, et al. Depleted bulk heterojunction colloidal quantum dot photovoltaics.Adv. Mater., 2011, 23(28): 3134-3138. |
[19] | MOREELS I, LAMBERT K, SMEETS D, et al.Size-dependent optical properties of colloidal PbS quantum dots.ACS Nano, 2009, 3(10): 3023-3030. |
[20] | LUTHER J M, LAW M, SONG Q, et al.Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1, 2-Ethanedithiol.ACS Nano, 2008, 2(2): 271-280. |
[21] | LIU L M, ZHANG X F, JI L, et al.Size-dependent ligand exchange of colloidal CdSe nanocrystals with S2- ions.RSC Adv., 2015, 5(110): 90570-90577. |
[22] | FRITZINGER B, CAPEK R K, LAMBERT K, et al.Utilizing self-exchange to address the binding of carboxylic acid ligands to CdSe quantum dots.J. Am. Chem. Soc., 2010, 132(29): 10195-10201. |
[23] | ZHONG H Z, LO S S, MIRKOVIC T, et al.Noninjection gram-scale synthesis of monodisperse pyramidal CuInS2 nanocrystals and their size-dependent properties.ACS Nano, 2010, 4(9): 5253-5262. |
[24] | ZHAI G M, XIE R W, WANG H, et al.Effects of capping ligands on optical properties and electronic energies of iron pyrite FeS2 nanocrystals and solid thin films.J. Alloys Compd., 2016, 674: 9-15. |
[25] | BROWN P R, KIM D, LUNT R R, et al.Energy level modification in lead sulfide quantum dot thin films through ligand exchange.ACS Nano, 2014, 8(6): 5863-5872. |
[26] | YANG S Y, PRENDERGAST D, NEATON J B.Tuning semiconductor band edge energies for solar photocatalysis via surface ligand passivation.Nano Lett., 2012, 12(1): 383-388. |
[27] | HYUN B R, ZHONG Y W, BARTNIK A C, et al.Electron injection from colloidal pbs quantum dots into titanium dioxide nanoparticles.ACS Nano, 2008, 2(11): 2206-2212. |
[28] | LIU Y, GIBBS M, PUTHUSSERY J, et al.Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids.Nano Lett., 2010, 10(5): 1960-1969. |
[1] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
[2] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[3] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[4] | YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(4): 359-366. |
[5] | FEI Ling, LEI Lei, WANG Degao. Progress of Two-dimensional MXene in New-type Thin-film Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(2): 215-224. |
[6] | ZHOU Zezhu, LIANG Zihui, LI Jing, WU Congcong. Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents [J]. Journal of Inorganic Materials, 2024, 39(11): 1197-1204. |
[7] | LI Qianyuan, LI Jiwei, ZHANG Yuhan, LIU Yankang, MENG Yang, CHU Yu, ZHU Yijia, XU Nuoyan, ZHU Liang, ZHANG Chuanxiang, TAO Haijun. Enhanced Photovoltaic Performance of Perovskite Solar Cells by PbTiO3 Modification and Polarization Treatment [J]. Journal of Inorganic Materials, 2024, 39(11): 1205-1211. |
[8] | DAI Xiaodong, ZHANG Luwei, QIAN Yicheng, REN Zhixin, CAO Huanqi, YIN Shougen. Controlling Vertical Composition Gradients in Sn-Pb Mixed Perovskite Solar Cells via Solvent Engineering [J]. Journal of Inorganic Materials, 2023, 38(9): 1089-1096. |
[9] | HAN Xu, YAO Hengda, LYU Mei, LU Hongbo, ZHU Jun. Application of Single-molecule Liquid Crystal Additives in CH(NH2)2PbI3 Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 1097-1102. |
[10] | FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 2023, 38(9): 1103-1109. |
[11] | DING Tongshun, FENG Ping, SUN Xuewen, SHAN Husheng, LI Qi, SONG Jian. Perovskite Film Passivated by Fmoc-FF-OH and Its Photovoltaic Performance [J]. Journal of Inorganic Materials, 2023, 38(9): 1076-1082. |
[12] | ZHANG Lun, LYU Mei, ZHU Jun. Research Progress of Cs2AgBiBr6 Perovskite Solar Cell [J]. Journal of Inorganic Materials, 2023, 38(9): 1044-1054. |
[13] | CHEN Yu, LIN Puan, CAI Bing, ZHANG Wenhua. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 991-1004. |
[14] | DONG Yiman, TAN Zhan’ao. Research Progress of Recombination Layers in Two-terminal Tandem Solar Cells Based on Wide Bandgap Perovskite [J]. Journal of Inorganic Materials, 2023, 38(9): 1031-1043. |
[15] | ZHANG Wanwen, LUO Jianqiang, LIU Shujuan, MA Jianguo, ZHANG Xiaoping, YANG Songwang. Zirconia Spacer: Preparation by Low Temperature Spray-coating and Application in Triple-layer Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(2): 213-218. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||