Journal of Inorganic Materials ›› 2014, Vol. 29 ›› Issue (7): 776-780.DOI: 10.3724/SP.J.1077.2014.14148
• Orginal Article • Previous Articles Next Articles
CHEN Feng1,2, SUN Tuan-Wei2, QI Chao2, WU Jin2, CUI Da-Xiang1, ZHU Ying-Jie2
Received:
2014-03-27
Published:
2014-07-20
Online:
2014-06-20
About author:
CHEN Feng (1981–), male, PhD candidate. E-mail: fchen@mail.sic.ac.cn
Supported by:
CLC Number:
CHEN Feng, SUN Tuan-Wei, QI Chao, WU Jin, CUI Da-Xiang, ZHU Ying-Jie. Microwave-assisted Solvothermal Synthesis of Calcium Phosphate Microspheres and Polyhedra[J]. Journal of Inorganic Materials, 2014, 29(7): 776-780.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 SEM images of CaP products prepared using Ca (CH3COO)2, NaH2PO4•2H2O and PLA-mPEG in mixed solvent of water and EG by the microwave-assisted solvothermal method at 120℃ for 30 min The volume of EG: (a,b) 0 mL; (c,d) 10 mL; (e,f) 15 mL; (g,h) 20 mL
Fig. 2 TEM micrographs (a)-(d) of the CaP products prepared using Ca(CH3COO)2, NaH2PO4•2H2O and PLA-mPEG in mixed solvent of water and EG by the microwave-assisted solvothermal method at 120℃ for 30 min The volume of EG: (a) 0 mL; (b) 10 mL; (c) 15 mL; (d) 20 mL
Fig. 3 Schematic illustration of the formation process of the CaP microspheres and polyhedra by the microwave-assisted hydrothermal/solvothermal methods
Fig. 4 XRD patterns (a) and FTIR spectra (b) of the products prepared using Ca(CH3COO)2, NaH2PO4•2H2O and PLA-mPEG in mixed solvent of water and EG with different volumes of EG by the microwave-assisted solvothermal method at 120℃ for 30 min
Fig. 5 TG curves of the products prepared using Ca (CH3COO)2, NaH2PO4•2H2O and PLA-mPEG in mixed solvent of water and EG with different volumes of EG by the microwave-assisted solvothermal method at 120℃ for 30 min
Fig. 6 Hb protein adsorption properties of the products prepared using Ca(CH3COO)2, NaH2PO4•2H2O and PLA-mPEG in mixed solvent of water and EG with different volumes of EG by the microwave-assisted solvothermal method at 120℃ for 30 min
[1] | FRATZL P, GUPTA H S, PASCHALIS E P, et al. Structure and mechanical quality of the collagen-mineral nano-composite in bone. J. Mater. Chem., 2004, 14(14): 2115-2123. |
[2] | TZAPHLIDOU M. Bone architecture: collagen structure and calcium/ phosphorus maps. J. Biol. Phys., 2008, 34(1/2): 39-49. |
[3] | ONG J L, CHAN D C N. Hydroxyapatite and their use as coatings in dental implants: a review. Crit. Rev. Biomed. Eng., 2000, 28(5/6): 667a-707a. |
[4] | YANG S B,WANG J, LIU C S. Research on calcium phosphate cement bone adhesive. J. Inorg. Mater., 2013, 28(1): 85-90. |
[5] | CHEN X Q, CHEN X N, ZHU X D, et al. Effect of surface topography of hydroxyapatite on human osteosarcoma MG-63 cell. J. Inorg. Mater., 2013, 28(8): 901-906. |
[6] | LAI C, TANG S Q, WANG Y J, et al. Formation of calcium phosphate nanoparticles in reverse microemulsions. Mater. Lett., 2005, 59(2/3): 210-214. |
[7] | LIN KL, CHANG J, ZHU Y J, et al. A facile one-step surfactant- free and low-temperature hydrothermal method to prepare uniform 3D structured carbonated apatite flowers. Cryst. Growth Des., 2009, 9(1): 177-181. |
[8] | CHEN F, ZHU Y J, WANG K W, et al. Surfactant-free solvothermal synthesis of hydroxyapatite nanowire/nanotube ordered arrays with biomimetic structures. CrystEngComm, 2011, 13(6): 1858-1863. |
[9] | CHEN F, TANG Q L, ZHU Y J, et al. Hydroxyapatite nanorods/poly(vinyl pyrolidone) composite nanofibers, arrays and three-dimensional fabrics: Electrospun preparation and transformation to hydroxyapatite nanostructures. Acta Biomater., 2010, 6(8): 3013-3020. |
[10] | CHEN X, TANG Q L, ZHU Y J, et al. Synthesis and antibacterial property of zinc loaded hydroxyapatite nanorods. Mater. Lett., 2012, 89: 233-235. |
[11] | LUO H T, ZHI W, LU X, et al. Research on preparation and biological properties of dense hydroxyapatite spheres. J. Inorg. Mater., 2013, 28(1): 40-44. |
[12] | CHEN F, ZHU Y J, WU J, et al. Nanostructured calcium phosphates: preparation and their application in biomedicine. Nano. Biomed. Eng., 2012, 4(1): 41-49. |
[13] | WANG K F, ZHOU C C, HONG Y L, et al. Review article: a review of protein adsorption on bioceramics. Interface Focus, 2012, 2(3): 259-277. |
[14] | ZENG H, CHITTUR K K, LACEFIELD W R. Analysis of bovine serum albumin adsorption on calcium phosphate and titanium surfaces. Biomaterials, 1999, 20(4): 377-384. |
[15] | WASSELL D T H, HALL R C, EMBERY G. Adsorption of bovine serum albumin onto hydroxyapatite. Biomaterials, 1995, 16(9): 697-702. |
[16] | BAGHBANZADEH M, CARBONE L, COZZOLI P D, et al. Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew. Chem. Int. Edit., 2011, 50(48): 11312-11359. |
[17] | GEDYE R, SMITH F, WESTAWAY K, et al. The use of microwave-ovens for rapid organic-synthesis. Tetrahedron Lett., 1986, 27(3): 279-282. |
[18] | GIGUERE R J, BRAY T L, DUNCAN S M, et al. Application of commercial microwave-ovens to organic-synthesis. Tetrahedron Lett., 1986, 27(41): 4945-4948. |
[19] | ZHU Y J, WANG W W, QI R J, et al. Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids. Angew. Chem. Int. Edit., 2004, 43(11): 1410-1414. |
[20] | ZHAO J, ZHU Y J, ZHENG J Q, et al. Microwave-assisted hydrothermal preparation using adenosine 5'-triphosphate disodium salt as a phosphate source and characterization of zinc-doped amorphous calcium phosphate mesoporous microspheres. Micropor. Mesopor. Mater., 2013, 180: 79-85. |
[21] | ZHAO X Y, ZHU Y J, QI C, et al. Hierarchical hollow hydroxyapatite microspheres: microwave-assisted rapid synthesis by using pyridoxal-5 '-phosphate as a phosphorus source and application in drug delivery. Chem. Asian J., 2013, 8(6): 1313-1320. |
[22] | QI C, ZHU Y J, LU B Q, CHEN F, et al. Hydroxyapatite hierarchically nanostructured porous hollow microspheres: rapid, sustainable microwave-hydrothermal synthesis by using creatine phosphate as an organic phosphorus source and application in drug delivery and protein adsorption. Chem. Eur. J., 2013, 19(17): 5332-5341. |
[23] | QI C, ZHU Y J, ZHAO X Y, et al. Highly stable amorphous calcium phosphate porous nanospheres: microwave-assisted rapid synthesis using ATP as phosphorus source and stabilizer, and their application in anticancer drug delivery. Chem. Eur. J., 2013, 19(3): 981-987. |
[24] | CHEN F, HUANG P, ZHU Y J, et al. The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods. Biomaterials, 2011, 32(34): 9031-9039. |
[25] | WANG K W, ZHU Y J, CHEN X Y, et al. Flower-like hierarchically nanostructured hydroxyapatite hollow spheres: facile preparation and application in anticancer drug cellular delivery. Chem. Asian J., 2010, 5(12): 2477-2482. |
[1] | LIU Wenlong, ZHAO Jin, LIU Juan, MAO Xiaojian, ZHANG Jian, WANG Shiwei. Microwave Drying of Spontaneous-Coagulation-Cast Wet Alumina Green Body [J]. Journal of Inorganic Materials, 2023, 38(4): 461-468. |
[2] | CHEN Yongqiang, WANG Yixue, ZHANG Fan, LI Hongxia, DONG Binbin, MIN Zhiyu, ZHANG Rui. Preparation of Special Ceramics by Microwave Heating: a Review [J]. Journal of Inorganic Materials, 2022, 37(8): 841-852. |
[3] | YAO Xiaogang, PENG Haiyi, GU Zhongyuan, HE Fei, ZHAO Xiangyu, LIN Huixing. Polyphenylene Oxide/Ca0.7La0.2TiO3 Microwave Composite Substrate [J]. Journal of Inorganic Materials, 2022, 37(5): 493-498. |
[4] | ZHANG Hang, HAN Kunyuan, DONG Lanlan, LI Xiang. Preparation and Characterization of β-tricalcium Phosphate/Nano Clay Composite Scaffolds via Digital Light Processing Printing [J]. Journal of Inorganic Materials, 2022, 37(10): 1116-1122. |
[5] | FU Yukun, ZENG Min, RAO Xianfa, ZHONG Shengwen, ZHANG Huijuan, YAO Wenli. Microwave-assisted Synthesis and Co, Al Co-modification of Ni-rich LiNi0.8Mn0.2O2 Materials for Li-ion Battery Electrode [J]. Journal of Inorganic Materials, 2021, 36(7): 718-724. |
[6] | WU Zhihong, DENG Yue, MENG Zhenzhen, ZHANG Guoli, ZHANG Luping, WANG Yubin. Microwave Absorbing Properties of Novel SiC/Cf Composites Containing SiC Array Modified Coating [J]. Journal of Inorganic Materials, 2021, 36(3): 306-312. |
[7] | MU Tinghai, XU Wentao, LING Junrong, DONG Tianwen, QIN Zixuan, ZHOU Youfu. Microstructure and Properties of ZrO2-AlN Composite Ceramics by Microwave Sintering [J]. Journal of Inorganic Materials, 2021, 36(11): 1231-1236. |
[8] | ZHU Zhengwang,FENG Rui,LIU Yang,ZHANG Yang,XIE Wenhan,DONG Lijie. Preparation and Property of CoFe2O4 Nanofibers with Fishbone-like Structure [J]. Journal of Inorganic Materials, 2020, 35(9): 1011-1016. |
[9] | SUN Tuanwei,ZHU Yingjie. One-step Solvothermal Synthesis of Strontium-doped Ultralong Hydroxyapatite Nanowires [J]. Journal of Inorganic Materials, 2020, 35(6): 724-728. |
[10] | CHEN Ting, XU Yanqiao, JIANG Weihui, XIE Zhixiang, WANG Lianjun, JIANG Wan. Ionic Liquid Assisted Microwave Synthesis of Cu-In-Zn-S/ZnS Quantum Dots and Their Application in White LED [J]. Journal of Inorganic Materials, 2020, 35(4): 439-446. |
[11] | LI Meng-Xia, LU Yue, WANG Li-Bin, HU Xian-Luo. Controlled Synthesis of Core-shell Structured Mn3O4@ZnO Nanosheet Arrays for Aqueous Zinc-ion Batteries [J]. Journal of Inorganic Materials, 2020, 35(1): 86-92. |
[12] | LI Jie, SONG Chen-Fei, PANG Xian-Juan. Controllable Synthesis and Photocatalytic Performance of BiVO4 under Visible-light Irradiation [J]. Journal of Inorganic Materials, 2019, 34(2): 164-172. |
[13] | HAN Lin-Cai, DING Shi-Hua, SONG Tian-Xiu, HUANG Long, ZHANG Xiao-Yun, XIONG Zhong. ZBAS on the Structure and Dielectric Property of BaAl2Si2O8 [J]. Journal of Inorganic Materials, 2018, 33(8): 883-888. |
[14] | MU Yang, DENG Jia-Xin, LI Hao, ZHOU Wan-Cheng. Comparison of High-temperature Dielectric and Microwave Absorbing Property of Two Continuous SiC Fibers [J]. Journal of Inorganic Materials, 2018, 33(4): 427-433. |
[15] | QU Jing-Jing, WEI Xing, LIU Fei, YUAN Chang-Lai, CHEN Guo-Hua, HUANG Xian-Pei. Heat-treatment on Crystallization and Dielecty Property of Mg-Al-Si-Ti-B Glass-ceramics [J]. Journal of Inorganic Materials, 2018, 33(12): 1309-1315. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||