Journal of Inorganic Materials ›› 2014, Vol. 29 ›› Issue (7): 769-775.DOI: 10.3724/SP.J.1077.2014.13532
• Orginal Article • Previous Articles Next Articles
XIAO Dong-Qin1,2, WANG Dong-Wei1,2, REN Jun-Chen1, DUAN Ke1,2, YAO Ning1, LU Xiong1, ZHENG Xiao-Tong1, WENG Jie1
Received:
2013-10-10
Revised:
2013-11-20
Published:
2014-07-20
Online:
2014-06-20
About author:
XIAO Dong-Qin. E-mail: xdqdxs@163.com
Supported by:
CLC Number:
XIAO Dong-Qin, WANG Dong-Wei, REN Jun-Chen, DUAN Ke, YAO Ning, LU Xiong, ZHENG Xiao-Tong, WENG Jie. Synthesis and Characterization of Copper-substituted Hydroxyapatite Micrspheres[J]. Journal of Inorganic Materials, 2014, 29(7): 769-775.
Add to citation manager EndNote|Ris|BibTeX
Solution | Ca(NO3)2 /mmol | Cu(NO3)2 /mmol | n(Cu+Ca) |
---|---|---|---|
S0 | 3 | 0 | 0 |
S1 | 2.97 | 0.03 | 0.01 |
S2 | 2.91 | 0.09 | 0.03 |
S3 | 2.85 | 0.15 | 0.05 |
S4 | 2.7 | 0.3 | 0.1 |
S5 | 2.4 | 0.6 | 0.2 |
Table 1 Solutions used for hydrothermal preparation of Cu-HA
Solution | Ca(NO3)2 /mmol | Cu(NO3)2 /mmol | n(Cu+Ca) |
---|---|---|---|
S0 | 3 | 0 | 0 |
S1 | 2.97 | 0.03 | 0.01 |
S2 | 2.91 | 0.09 | 0.03 |
S3 | 2.85 | 0.15 | 0.05 |
S4 | 2.7 | 0.3 | 0.1 |
S5 | 2.4 | 0.6 | 0.2 |
Sample | χt (Theoretical) | χa (Actual) | R /% |
---|---|---|---|
S1 | 0.01 | 0.0076 | 76 |
S2 | 0.03 | 0.0144 | 48 |
S3 | 0.05 | 0.0155 | 31 |
Table 2 Cu-substitution ratio of Cu-HA
Sample | χt (Theoretical) | χa (Actual) | R /% |
---|---|---|---|
S1 | 0.01 | 0.0076 | 76 |
S2 | 0.03 | 0.0144 | 48 |
S3 | 0.05 | 0.0155 | 31 |
[1] | VALLET-REGÍ M, GONZÁLEZ-CALBET J M. Calcium phosphates as substitution of bone tissues. Progress in Solid State Chemistry, 2004, 32(1): 1-31. |
[2] | FRAGA C G. Relevance, essentiality and toxicity of trace elements in human health. Molecular Aspects of Medicine, 2005, 26(4): 235-244. |
[3] | HU G. Copper stimulates proliferation of human endothelial cells under culture. Journal of Cellular Biochemistry, 1998, 69(3): 326-335. |
[4] | RODRÍGUEZ J P, RIOS S, GONZALEZ M. Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper. Journal of Cellular Biochemistry, 2002, 85(1): 92-100. |
[5] | STRAUSE L, SALTMAN P, GLOWACKI J. The effect of deficiencies of manganese and copper on osteoinduction and on resorption of bone particles in rats. Calcified Tissue International, 1987, 41(3): 145-150. |
[6] | MEHTAR S, WIID I, TODOROV S D. The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: an in-vitro study. Journal of Hospital Infection, 2008, 68(1): 45-51. |
[7] | STANIĆ V, DIMITRIJEVIĆ S, ANTIĆ-STANKOVIĆ J, et al. Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Applied Surface Science, 2010, 256(20): 6083-6089. |
[8] | POGOSOVA M A, KAZIN P E, TRETYAKOV Y D. Synthesis and characterisation of copper doped Ca-Li hydroxyapatite. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2012, 284: 33-35. |
[9] | LI JI-DONG, LI YU-BAO, ZUO Yi, et al. Preparation and antibacterial properties valuation of copper-substituted nano-hydroxyapatite. Functional Materials, 2006, 37(4): 635-638. |
[10] | LI Y, HO J, OOI C P. Antibacterial efficacy and cytotoxicity studies of copper (II) and titanium (IV) substituted hydroxyapatite nanoparticles. Materials Science and Engineering: C, 2010, 30(8): 1137-1144. |
[11] | LI J, LI Y, ZHANG L, et al. Composition of calcium deficient Na- containing carbonate hydroxyapatite modified with Cu (II) and Zn (II) ions. Applied Surface Science, 2008, 254(9): 2844-2850. |
[12] | LIU J, YE X, WANG H, et al. The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method. Ceramics international, 2003, 29(6): 629-633. |
[13] | JOKIĆ B, MITRIĆ M, RADMILOVIĆ V, et al. Synthesis and characterization of monetite and hydroxyapatite whiskers obtained by a hydrothermal method. Ceramics International, 2011, 37(1): 167-173. |
[14] | JEMAL J, TOUNSI H, CHAARI K, et al. NO reduction with NH3 under oxidizing atmosphere on copper loaded hydroxyapatite. Applied Catalysis B: Environmental, 2012, 113: 255-260. |
[15] | CORAMI A, D’ACAPITO F, MIGNARDI S, et al. Removal of Cu from aqueous solutions by synthetic hydroxyapatite: EXAFS investigation. Materials Science and Engineering: B, 2008, 149(2): 209-213. |
[16] | GADALETA S J,PASCHALIS E P,CAMACHO N P,et al. Fourier Transform Infrared Spectroscopy of Synthetic and Bbiological Apatites. In: Amjad Z, editor. Mineral Scale Formation and Inhibition. New York: Plenum Press, 1995: 283-294. |
[17] | KLEE W E, ENGEL G. Infrared spectra of the phosphate ions in various apatites. Journal of Inorganic Nuclear Chemistry, 1970, 32(6): 1837-1843. |
[18] | ŚLÓSARCZYK A, PASZKIEWICZ Z, PALUSZKIEWICZ C. FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods. Journal of Molecular Structure, 2005, 744: 657-661. |
[19] | MEYER J L, FOWLER B O. Lattice defects in nonstoichiometric calcium hydroxylapatites: a chemical approach. Inorganic Chemistry, 1982, 21(8): 3029-3035. |
[20] | LAFON J P, CHAMPION E, BERNACHE-ASSOLLANT D. Processing of AB-type carbonated hydroxyapatite Ca10-x(PO4)6-x (CO3)x(OH)2-x-2y(CO3)y, ceramics with controlled composition. Journal of the European Ceramic Society, 2008, 28(1): 139-147. |
[21] | WENK H R, HEIDELBACH F. Crystal alignment of carbonated apatite in bone and calcified tendon: results from quantitative texture analysis. Bone, 1999, 24(4): 361-369. |
[22] | KAWASAKI T, NIIKURA M, KOBAYASHI Y. Fundamental study of hydroxyapatite high-performance liquid chromatography. III, Direct experimental confirmation of the existence of two types of absorbing surface on the hydroxyapatite crystal. Journal of Chromatography A, 1990, 515: 125-148. |
[23] | BARAVELLI S, BIGI A, RIPAMONTI A, et al. Thermal behavior of bone and synthetic hydroxyapatites submitted to magnesium interaction in aqueous medium. Journal of Inorganic Biochemistry, 1984, 20(1): 1-12. |
[24] | LI Z Y, LAM W M, YANG C, et al. Chemical composition, crystal size and lattice structural changes after incorporation of strontium into biomimetic apatite. Biomaterials, 2007, 28(7): 1452-1460. |
[25] | GALERA MARTÍNEZ M, PHAM MINH D, Weiss-Hortala E, et al. Synthesis, characterization, and thermo-mechanical properties of copper-loaded apatitic calcium phosphates. Composite Interfaces, 2013, 20(8): 647-660. |
[26] | GINEBRA M P, FERNANDEZ E, DE MAEYER E A P, et al. Setting reaction and hardening of an apatitic calcium phosphate cement. Journal of Dental Research, 1997, 76(4): 905-912. |
[27] | NEIRA I S, KOLEN’KO Y V, LEBEDEV O I, et al. An effective morphology control of hydroxyapatite crystals via hydrothermal synthesis. Crystal Growth and Design, 2009, 9(1): 466-474. |
[28] | LU X, WANG Y, WANG J, et al. Calcium phosphate crystal growth under controlled environment through urea hydrolysis. Journal of crystal growth, 2006, 297(2): 396-402. |
[29] | WANG Y, HASSAN M S, GUNAWAN P, et al. Polyelectrolyte mediated formation of hydroxyapatite microspheres of controlled size and hierarchical structure. Journal of Colloid and Interface Science, 2009, 339(1): 69-77. |
[30] | HE Q J, HUANG Z L. Template-directed growth and characterization of flowerlike porous carbonated hydroxyapatite spheres. Crystal Research and Technology, 2007, 42(5): 460-465. |
[31] | YANG L X, YIN J J, WANG L L, et al. Hydrothermal synthesis of hierarchical hydroxyapatite: preparation, growth mechanism and drug release property. Ceramics International, 2012, 38(1): 495-502. |
[32] | MAYER I, CUISINIER F J G, GDALYA S, et al. TEM study of the morphology of Mn2+ doped calcium hydroxyapatite and β-tricalcium phosphate. Journal of Inorganic Biochemistry, 2008, 102(2): 311-317. |
[33] | BOANINI E, GAZZANO M, BIGI A. Ionic substitutions in calcium phosphates synthesized at low temperature. Acta biomaterialia, 2010, 6(6): 1882-1894. |
[34] | ZHANG Y, DAWE R A. Influence of Mg2+ on the kinetics of calcite precipitation and calcite crystal morphology. Chemical Geology, 2000, 163(1): 129-138. |
[35] | WANG F, GUO Y, WANG H, et al. Facile preparation of hydroxyapatite with a three dimensional architecture and potential application in water treatment. CrystEngComm, 2011, 13(19): 5634-5637. |
[1] | LI Chengyu, DING Ziyou, HAN Yingchao. In vitro Antibacterial and Osteogenic Properties of Manganese Doped Nano Hydroxyapatite [J]. Journal of Inorganic Materials, 2024, 39(3): 313-320. |
[2] | LIU Yan, ZHANG Yufan, WANG Ximan, LI Ting, MA Wenting, YANG Fuwei, CHEN Liang, ZHAO Dongyue, YAN Xiaoqin. Consolidation of Fragile Weathered Bone Relics Using Hydroxyapatite Material as Consolidant [J]. Journal of Inorganic Materials, 2023, 38(11): 1345-1354. |
[3] | CHEN Yaling, SHU Song, WANG Shaoxin, LI Jianjun. Mn-HAP SCR Catalyst: Preparation and Sulfur Resistance [J]. Journal of Inorganic Materials, 2022, 37(10): 1065-1072. |
[4] | ZHU Yutong, TAN Peijie, LIN Hai, ZHU Xiangdong, ZHANG Xingdong. Injectable Hyaluronan/Hydroxyapatite Composite: Preparation, Physicochemical Property and Biocompatibility [J]. Journal of Inorganic Materials, 2021, 36(9): 981-990. |
[5] | LIN Ziyang, CHANG Yuchen, WU Zhangfan, BAO Rong, LIN Wenqing, WANG Deping. Different Simulated Body Fluid on Mineralization of Borosilicate Bioactive Glass-based Bone Cement [J]. Journal of Inorganic Materials, 2021, 36(7): 745-752. |
[6] | WU Zhongcao, HUAN Zhiguang, ZHU Yufang, WU Chengtie. 3D Printing and Characterization of Microsphere Hydroxyapatite Scaffolds [J]. Journal of Inorganic Materials, 2021, 36(6): 601-607. |
[7] | WU Yonghao, LI Xiangfeng, ZHU Xiangdong, ZHANG Xingdong. Construction of Hydroxyapatite Nanoceramics with High Mechanical Strength and Efficiency in Promoting the Spreading and Viability of Osteoblasts [J]. Journal of Inorganic Materials, 2021, 36(5): 552-560. |
[8] | WANG Tingting, SHI Shumei, LIU Chenyuan, ZHU Wancheng, ZHANG Heng. Synthesis of Hierarchical Porous Nickel Phyllosilicate Microspheres as Efficient Adsorbents for Removal of Basic Fuchsin [J]. Journal of Inorganic Materials, 2021, 36(12): 1330-1336. |
[9] | SONG Keke, HUANG Hao, LU Mengjie, YANG Anchun, WENG Jie, DUAN Ke. Hydrothermal Preparation and Characterization of Zn, Si, Mg, Fe Doped Hydroxyapatite [J]. Journal of Inorganic Materials, 2021, 36(10): 1091-1096. |
[10] | SHAO Yueting, ZHU Yingjie, DONG Liying, CAI Anyong. Nanocomposite “Xuan Paper” Made from Ultralong Hydroxyapatite Nanowires and Cellulose Fibers and Its Anti-mildew Properties [J]. Journal of Inorganic Materials, 2021, 36(1): 107-112. |
[11] | PAN Bichen,REN Penghe,ZHOU Tejun,CAI Zhenyang,ZHAO Xiaojun,ZHOU Hongming,XIAO Lairong. Microstructure and Property of Thermal Insulation Coating on the Carbon Fiber Reinforced Epoxy Resin Composites [J]. Journal of Inorganic Materials, 2020, 35(8): 947-952. |
[12] | SUN Tuanwei,ZHU Yingjie. One-step Solvothermal Synthesis of Strontium-doped Ultralong Hydroxyapatite Nanowires [J]. Journal of Inorganic Materials, 2020, 35(6): 724-728. |
[13] | LIU Ziyang, GENG Zhen, LI Zhaoyang. Preparing Biomedical CaCO3/HA Composite with Oyster Shell [J]. Journal of Inorganic Materials, 2020, 35(5): 601-607. |
[14] | DAI Zhao,WANG Ming,WANG Shuang,LI Jing,CHEN Xiang,WANG Da-Lin,ZHU Ying-Chun. Zirconia Reinforced Trace Element Co-doped Hydroxyapatite Coating [J]. Journal of Inorganic Materials, 2020, 35(2): 179-186. |
[15] | FU Ya-Kang,WENG Jie,LIU Yao-Wen,ZHANG Ke-Hong. hBMP-2 Contained Composite Coatings on Titanium Mesh Surface: Preparation and hBMP-2 Release [J]. Journal of Inorganic Materials, 2020, 35(2): 173-178. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||