[1] Long M, Cai W, Cai J, et al. Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation. J. Phys. Chem. B, 2006, 110(41): 20211-20216.
[2] Kim J Y, Grishin A M. AgTaO3 and AgNbO3 thin films by pulsed laser deposition. Thin Solid Films, 2006, 515(2): 615-618.
[3] Kato H, Kobayashi H, Kudo A. Role of Ag+ in the band structures and photocatalytic properties of AgMO3 (M: Ta and Nb) with the perovskite structure. J. Phys. Chem. B, 2002, 106(48): 12441-12447.
[4] Li G Q, Kako T, Wang D F, et al. Composition dependence of the photophysical and photocatalytic properties of (AgNbO3)1-x(NaNbO3)x solid solutions. J. Solid State Chem., 2007, 180(10): 2845-2850.
[5] Wang D, Kako T, Ye J. Efficient photocatalytic decomposition of acetaldehyde over a solid-solution perovskite (Ag0.75Sr0.25) (Nb0.75Ti0.25)O3 under visible-light irradiation. J. Am. Chem. Soc., 2008, 130(9): 2724-2725.
[6] Thompson T L, Yates Jr J T. Surface science studies of the photoactivation of TiO2-new photochemical processes. Chem. Rev., 2006, 106(10): 4428-4453.
[7] Zou J, Zhu B, Wang L, et al. Zn- and La-modified TiO2 photocatalysts for the isomerization of norbornadiene to quadricyclane. J. Mol. Catal. A: Chem., 2008, 286(1/2): 63-69.
[8] Chen C, Wang Z, Ruan S, et al. Photocatalytic degradation of C.I. acid orange 52 in the presence of Zn-doped TiO2 prepared by a stearic acid gel method. Dyes and Pigments, 2008, 77(1): 204-209.
[9] Chen S, ZhaoW, Zhang S, et al. Preparation, characterization and photocatalytic activity of N-containing ZnO powder. Chem. Eng. J., 2009, 148(2/3): 263-269
[10] Jason F, Weaver G, Hoflund B. Surface characterization study of the thermal decomposition of AgO. J. Phys. Chem., 1994, 98(34): 8519-8524.
[11] Tabata K, Choso T, Nagasawa Y. The topmost structure of annealed single crystal of LiNbO3. Surf. Sci., 1998, 408(1/2/3): 137-145.
[12] Tabata K, Kamada M, Choso T, et al. Photoelectron spectroscopy investigation of NO adsorption on defects of LiNbO3 surfaces. Appl. Surf. Sci., 1998, 125(1): 93-98.
[13] Atuchina V, Kalabin I, Kesler V, et al. Nb3d and O1s core levers and chemical bonding in niobates. J. Electron. Spectrosc. Relat. Phenom., 2005, 142(2): 129-134.
[14] Campbell C T. Atomic and molecular oxygen adsorption on Ag(111). Surf. Sci., 1985, 157(1): 43-60.
[15] Zheng J, Jiang Z, Kuang Q, et al. Shape-controlled fabrication of porous ZnO architectures and their photocatalytic properties. J. Solid State Chem., 2009, 182(1): 115-121.
[16] Xu H, Li H, Wu C, et al. Preparation, characterization and photocatalytic properties of Cu-loaded BiVO4. J. Hazard. Mater., 2008, 153(1/2): 877-884.
[17] Takizawa T, Watanabe T, Honda K. Photocatalytic through excitation of adsorbates. 2. a comparative study of rhodamine B and methylene blue on cadmium sulfide. J. Phys. Chem., 1978, 82(12): 1391-1396.
[18] Zhang T, Oyama T, Horikoshi S, et al. Photocatalyzed N-demethylation and degradation of methylene blue in titania dispersions exposed to concentrated sunlight. Sol. Energy Mater. Sol. Cells, 2002, 73(3): 287-303.
[19] Zhang T, Oyama T, Aoshima A, et al. Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation. J. Photochem. Photobiol. A, 2001, 140(2): 163-172. |