Journal of Inorganic Materials ›› 2025, Vol. 40 ›› Issue (12): 1349-1355.DOI: 10.15541/jim20250155
• Topical Section: Key Materials for High-temperature Fuel Cells (Guest Editor: LING Yihan) • Previous Articles Next Articles
LIU Tong1,2(
), HUANG Su2, ZHU Shiyue3, ZHA Fanglin4, HU Xuelei1, WANG Yao2
Received:2025-04-13
Revised:2025-06-17
Published:2025-12-20
Online:2025-06-27
About author:LIU Tong (1985-), male, associate professor. E-mail: liu_tong@wit.edu.cn
Supported by:CLC Number:
LIU Tong, HUANG Su, ZHU Shiyue, ZHA Fanglin, HU Xuelei, WANG Yao. Preparation of Cobalt-free Composite Cathode for Efficient High-temperature Hydrogen Fuel Cell via One-pot Synthesis Method[J]. Journal of Inorganic Materials, 2025, 40(12): 1349-1355.
Fig. 3 SEM-EDS images of (a-f) O-SSF-SDC and (g-l) M-SSF-SDC composite materials (a, g) Overlayer images of all elements; (b, h) SEM images; (c, i) Ce; (d, j) Sm; (e, k) O; (f, l) Fe
Fig. 4 (a) SEM image and (b-h) line-scanning EDS elemental mapping images for symmetrical cell with O-SSF-SDC composite cathode (b) Ce; (c) Sm; (d) Sr; (e) Fe; (f) Y; (g) Zr; (h) O
Fig. 7 Electrochemical performance of single cell with O-SSF-SDC cathode (a) I-V-P curves; (b) Nyquist curves; (c) Frequency vs. imaginary part of EIS spectra Colorful figures are available on website
| [1] |
LIU M, LYNCH M B, BLINN K, et al. Rational SOFC material design: new advances and tools. Materials Today, 2011, 14(11): 534.
DOI URL |
| [2] |
JACOBSON A J. Materials for solid oxide fuel cells. Chemistry of Materials, 2010, 22(3): 660.
DOI URL |
| [3] |
KAUR P, SINGH K, Review of perovskite-structure related cathode materials for solid oxide fuel cells. Ceramics International, 2020, 46(5): 5521.
DOI URL |
| [4] | NIU Y, SUNARSO J, LIANG F, et al. A comparative study of oxygen reduction reaction on Bi-and La-doped SrFeO3-δ perovskite cathodes. Journal of the Electrochemical Society, 2010, 158(2): B132. |
| [5] | DONG X, YU S, GU Y, et al. Tailoring SrFeO3 cathode with Ta and F allows high performance for proton-conducting solid oxide fuel cells. Sustainable Materials and Technologies, 2024, 41: e01104. |
| [6] |
SUN Q, SUN L, DOU Y, et al. Insights into the oxygen reduction reaction on Cu-doped SrFeO3-δ cathode for solid oxide fuel cells. Journal of Power Sources, 2021, 497: 229877.
DOI URL |
| [7] |
XU H, ZHANG H, CHU A. An investigation of oxygen reduction mechanism in nano-sized LSCF-SDC composite cathodes. International Journal of Hydrogen Energy, 2016, 41(47): 22415.
DOI URL |
| [8] |
ZHANG D, YANG W, WANG Z, et al. Efficient electrochemical CO2 reduction reaction on a robust perovskite type cathode with in-situ exsolved Fe-Ru alloy nanocatalysts. Separation and Purification Technology, 2023, 304: 122287.
DOI URL |
| [9] |
YANG C, WANG Y, TIAN Y, et al. Electrochemical performance of symmetric solid oxide cells employing a Sc-doped SrFeO3-δ-based electrode. Chemical Engineering Journal, 2024, 485: 149970.
DOI URL |
| [10] |
ZHAO S, NA L, SUN L, et al. One-pot synthesis Pr6O11 decorated Pr2CuO4 composite cathode for solid oxide fuel cells. International Journal of Hydrogen Energy, 2022, 47(9): 6227.
DOI URL |
| [11] |
HU F, LING Y, FANG S, et al. Engineering dual- exsolution on self-assembled cathode to achieve efficient electrocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2023, 337: 122968.
DOI URL |
| [12] |
LIU Y, LIU T, ZHANG L, et al. One-pot synthesized NiFe2O4/CeO2 composite catalyst for efficient degradation of methylene blue via photocatalysis under visible light. Catalysis Communications, 2023, 185: 106814.
DOI URL |
| [13] |
RASOULI S, MOEEN S J. Combustion synthesis of Co-doped zinc oxide nanoparticles using mixture of citric acid-glycine fuels. Journal of Alloys and Compounds, 2011, 509(5): 1915.
DOI URL |
| [14] |
HUANG Y, QIU R, LIAN W, et al. Measurement of partial electrical conductivities and transport numbers of mixed ionic- electronic conducting oxides. Journal of Power Sources, 2022, 528: 231201.
DOI URL |
| [15] |
CHEN D, LIN Z, ZHU H, et al. Percolation theory to predict effective properties of solid oxide fuel-cell composite electrodes. Journal of Power Sources, 2009, 191(2): 240.
DOI URL |
| [16] |
BERTEI A, NICOLELLA C. Percolation theory in SOFC composite electrodes: effects of porosity and particle size distribution on effective properties. Journal of Power Sources, 2011, 196(22): 9429.
DOI URL |
| [17] |
ZHANG Y, XIA C. Film percolation for composite electrodes of solid oxide fuel cells. Electrochimica Acta, 2011, 56(13): 4763.
DOI URL |
| [18] |
HONG T, WANG Y, XIA C. Nano-structure effect on solid state fuel cells cathode durability. Journal of Inorganic Materials, 2013, 28(11): 1187.
DOI URL |
| [19] |
BAHARUDDIN N A, MUCHTAR A, SOMALU M R. Short review on cobalt-free cathodes for solid oxide fuel cells. International Journal of Hydrogen Energy, 2017, 42(14): 9149.
DOI URL |
| [20] |
DESTA H G, GEBRESLASSIE G, ZHANG J, et al. Enhancing performance of lower-temperature solid oxide fuel cell cathodes through surface engineering: a review. Progress in Materials Science, 2024, 147: 101353.
DOI URL |
| [21] |
JIANG X, ZHOU X, LIU L, et al. Electrochemical performance of a low-temperature solid oxide fuel cells with cobalt-based perovskite as the cathode. Materials Science and Engineering: B, 2025, 313: 117941.
DOI URL |
| [22] |
LUO Y, CHANG X, WANG J, et al. Precise regulation of in situ exsolution components of nanoparticles for constructing active interfaces towards carbon dioxide reduction. ACS Nano, 2025, 19(1): 1463.
DOI URL |
| [23] |
WANG J, ZHANG D, LIU T, et al. Self-assembled FeRu bimetallic nanocatalyst for efficient and durable mutual CO-CO2 conversion in a reversible solid oxide electrochemical cell. Science China Materials, 2024, 67: 1471.
DOI |
| [24] |
GAO J, WEI Z, YUAN M, et al. Boosting oxygen reduction activity and CO2 resistance on bismuth ferrite-based perovskite cathode for low-temperature solid oxide fuel cells below 600 ℃. Journal of Energy Chemistry, 2024, 90: 600.
DOI URL |
| [25] |
GAO Y, ZHANG M, FU M, et al. A comprehensive review of recent progresses in cathode materials for Proton-conducting SOFCs. Energy Reviews, 2023, 2(3): 100038.
DOI URL |
| [1] | CHAI Runyu, ZHANG Zhen, WANG Menglong, XIA Changrong. Preparation of Ceria Based Metal-supported Solid Oxide Fuel Cells by Direct Assembly Method [J]. Journal of Inorganic Materials, 2025, 40(7): 765-771. |
| [2] | QU Jifa, WANG Xu, ZHANG Weixuan, ZHANG Kangzhe, XIONG Yongheng, TAN Wenyi. Enhanced Sulfur-resistance for Solid Oxide Fuel Cells Anode via Doping Modification of NaYTiO4 [J]. Journal of Inorganic Materials, 2025, 40(5): 489-496. |
| [3] | XUE Ke, CAI Changkun, XIE Manyi, LI Shuting, AN Shengli. Pr1+xBa1-xFe2O5+δ Cathode Materials for Solid Oxide Fuel Cells: Preparation and Electrochemical Performance [J]. Journal of Inorganic Materials, 2025, 40(4): 363-371. |
| [4] | LIU Hongming, ZHANG Jinke, CHEN Zhengpeng, LI Mingfei, QIAN Xiuyang, SUN Chuanqi, XIONG Kai, RAO Mumin, CHEN Chuangting, GAO Yuan, LING Yihan. Enhanced Performance of La0.7Sr0.3FeO3-δ Cathode for SOFC via Implementation of B-site High-entropy Strategy [J]. Journal of Inorganic Materials, 2025, 40(12): 1433-1442. |
| [5] | YANG Hengqiang, ZHANG Xinyue, MA Yichu, ZHOU Qingjun. Iron-based Perovskite Material La0.25M0.75FeO3-δ (M=Ca, Sr, Ba): Preparation and Performance as Cathode for Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2025, 40(12): 1365-1372. |
| [6] | WANG Zhe, HAO Hongru, WU Zonghui, XU Lingling, LÜ Zhe, WEI Bo. Enhancing Cr-tolerance Ability of Double Perovskite Cathodes through Configuration Entropy Engineering [J]. Journal of Inorganic Materials, 2025, 40(12): 1341-1348. |
| [7] | JIANG Yuehong, SONG Yunfeng, ZHANG Leilei, MA Ji, SONG Zhaoyuan, LONG Wen. Fluorination of BaZr0.1Ce0.7Y0.1Yb0.1O3 as Electrolyte Material for Proton-conducting Solid Oxide Fuel Cell [J]. Journal of Inorganic Materials, 2025, 40(12): 1356-1364. |
| [8] | XUE Zixuan, YIN Chaofan, YAO Yuechao, WANG Yanmin, SUN Yueyue, LIU Zhengrong, ZHOU Yucun, ZHOU Jun, WU Kai. Research Progress on Proton-conducting Solid Oxide Fuel Cells with Hydrogen-containing Fuel [J]. Journal of Inorganic Materials, 2025, 40(12): 1324-1340. |
| [9] | ZHANG Jinghui, LU Xiaotong, MAO Haiyan, TIAN Yazhou, ZHANG Shanlin. Effect of Sintering Additives on Sintering Behavior and Conductivity of BaZr0.1Ce0.7Y0.2O3-δ Electrolytes [J]. Journal of Inorganic Materials, 2025, 40(1): 84-90. |
| [10] | PAN Jianlong, MA Guanjun, SONG Lemei, HUAN Yu, WEI Tao. High Stability/Catalytic Activity Co-based Perovskite as SOFC Anode: In-situ Preparation by Fuel Reducing Method [J]. Journal of Inorganic Materials, 2024, 39(8): 911-919. |
| [11] | YE Zibin, ZOU Gaochang, WU Qiwen, YAN Xiaomin, ZHOU Mingyang, LIU Jiang. Preparation and Performances of Tubular Cone-shaped Anode-supported Segmented-in-series Direct Carbon Solid Oxide Fuel Cell [J]. Journal of Inorganic Materials, 2024, 39(7): 819-827. |
| [12] | ZHANG Kun, WANG Yu, ZHU Tenglong, SUN Kaihua, HAN Minfang, ZHONG Qin. LaNi0.6Fe0.4O3 Cathode Contact Material: Electrical Conducting Property Manipulation and Its Effect on SOFC Electrochemical Performance [J]. Journal of Inorganic Materials, 2024, 39(4): 367-373. |
| [13] | CHEN Zhengpeng, JIN Fangjun, LI Mingfei, DONG Jiangbo, XU Renci, XU Hanzhao, XIONG Kai, RAO Muming, CHEN Chuangting, LI Xiaowei, LING Yihan. Double Perovskite Sr2CoFeO5+δ: Preparation and Performance as Cathode Material for Intermediate-temperature Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2024, 39(3): 337-344. |
| [14] | XUE Dingxi, YI Bingyao, LI Guojun, MA Shuai, LIU Keqin. Numerical Simulation of Thermal Stress in Solid Oxide Fuel Cells with Functional Gradient Anode [J]. Journal of Inorganic Materials, 2024, 39(11): 1189-1196. |
| [15] | GUO Tianmin, DONG Jiangbo, CHEN Zhengpeng, RAO Mumin, LI Mingfei, LI Tian, LING Yihan. Enhanced Compatibility and Activity of High-entropy Double Perovskite Cathode Material for IT-SOFC [J]. Journal of Inorganic Materials, 2023, 38(6): 693-700. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||