 
 Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (8): 883-890.DOI: 10.15541/jim20220097
Special Issue: 【能源环境】金属有机框架材料(202309); 【信息功能】电致变色与热致变色材料(202312)
• RESEARCH ARTICLE • Previous Articles Next Articles
					
													ZHANG Xiaoyu( ), LIU Yongsheng, LI Ran, LI Yaogang, ZHANG Qinghong, HOU Chengyi, LI Kerui(
), LIU Yongsheng, LI Ran, LI Yaogang, ZHANG Qinghong, HOU Chengyi, LI Kerui( ), WANG Hongzhi(
), WANG Hongzhi( )
)
												  
						
						
						
					
				
Received:2022-02-28
															
							
																	Revised:2022-05-31
															
							
															
							
																	Published:2022-08-20
															
							
																	Online:2022-06-03
															
						Contact:
								WANG Hongzhi, professor. E-mail: wanghz@dhu.edu.cn;About author:ZHANG Xiaoyu(1998-), male, Master candidate. E-mail: dhuzxyu@163.com				
													Supported by:CLC Number:
ZHANG Xiaoyu, LIU Yongsheng, LI Ran, LI Yaogang, ZHANG Qinghong, HOU Chengyi, LI Kerui, WANG Hongzhi. Cu3(HHTP)2 Film-based Ionic-liquid Electrochromic Electrode[J]. Journal of Inorganic Materials, 2022, 37(8): 883-890.
 
																													Fig. 1 Characterization of Cu3(HHTP)2 films (a) Change of absorbance at 800 nm wavelength with film thickness, inset showing the pictures of Cu3(HHTP)2 films obtained in different growth-cycles; (b) Surface SEM image of the Cu3(HHTP)2 film obtained from 20 cycles; (c) XRD patterns of Cu3(HHTP)2; (d) Raman spectra of Cu3(HHTP)2 and HHTP ligand
 
																													Fig. 2 XPS spectrum and poresize distribution of Cu3(HHTP)2 (a) XPS full spectrum; (b) High resolution XPS spectrum of Cu2p3/2; (c) Pore size distribution diagram with inset showing N2 adsorption isotherm curves for Cu3(HHTP)2 powders measured at 77 K
 
																													Fig. 3 (a) Transmittance at 800 nm wavelength for Cu3(HHTP)2 films with different thicknesses at constant voltages of -0.9 and 0.4 V in [EMIm]BF4 with inset photos showing 20C film at -0.9 V and 0.4 V ; (b) UV-Vis transmission spectra of 20C films measured in various electrolytes at wavelength from 300 to 800 nm; (c) Temporal response of the transmittance of 20C films measured in various electrolytes; (d) Coloring efficiencies of 20C films in various electrolytes, respectively
 
																													Fig. 4 Cyclic voltammetry curves of 20C films at scan rates from 10 to 70 mV∙s-1 in (a) LiClO4/PC, (b) NaClO4/PC solution, (c) [EMIm]BF4, and (d) [BMIm]BF4 with inset showing peak current at different scan rates (ip) as a function of square root of the scan rate (V1/2)); (e) Nyquist impedance data (dots) and corresponding fitting results (lines) of 20C films in various electrolytes, respectively with inset showing corresponding equivalent circuit; (f) Calculated diffusion coefficients of 20C films in various electrolytes from electrochemical impedance spectroscopy and cyclic voltammetry, respectively
 
																													Fig. 5 Photos of (a) bleaching state and (b) coloring state of Cu3(HHTP)2 EC device, and (c) UV-Vis transmission spectra of Cu3(HHTP)2 EC devices at voltages of +3 and -3 V
 
																													Fig. 6 (a) Structure diagram of Cu3(HHTP)2 and poly (3,4-ethylene dioxythiophene) (PEDOT) electrochromic multiple device, and (b) UV-Vis transmission spectra of multiple devices at voltages of +3 and -3 V
| [1] | XU C, LIU L, LEGENSKI S, et al. Switchable window based on electrochromic polymers. Journal of Materials Research, 2004,  19(7): 2072-2080. DOI URL | 
| [2] | WU X, ZHENG J, XU C. A newly-designed self-powered electrochromic window. Science China Chemistry, 2016,  60(1): 84-89. DOI URL | 
| [3] | WADE C R, LI M, DINCĂ M. Facile deposition of multicolored electrochromic metal-organic framework thin films. Angewandte Chemie International Edition, 2013,  52: 13377-13381. DOI URL | 
| [4] | WADE C R, LI M, DINCĂ M. Transparent-to-dark electrochromic behavior in naphthalene-diimide-based mesoporous MOF-74 analogs. Chem, 2016,  1(11): 264-272. DOI URL | 
| [5] | RIERA M, LAMBROS E, NGUYEN T, et al. Low-order many-body interactions determine the local structure of liquid water. Chemical Science, 2019,  10(35): 8211-8218. DOI URL | 
| [6] | LI R, LI K, WANG G, et al. Ion-transport design for high- performance Na+-based electrochromics. ACS Nano, 2018,  12: 3759-3768. DOI URL | 
| [7] | MUKHIYA T, OJHA G, DAHAL B, et al. Designed assembly of porous cobalt oxide/carbon nanotentacles on electrospun hollow carbon nanofibers network for supercapacitor. ACS Applied Energy Materials, 2020,  3(4): 3435-3444. DOI URL | 
| [8] | QIU X, WANG N, DONG X, et al. A high-voltage Zn-organic battery using a nonflammable organic electrolyte. Angewandte Chemie International Edition, 2021,  60: 21025-21032. DOI URL | 
| [9] | KIM J, LEE J, YOU J, et al. Conductive polymers for next- generation energy storage systems: recent progress and new functions. Materials Horizons, 2016,  3(6): 517-535. DOI URL | 
| [10] | CHEN J, NAVEED A, NULI Y, et al. Designing an intrinsically safe organic electrolyte for rechargeable batteries. Energy Storage Materials, 2020,  31: 382-400. DOI URL | 
| [11] | DANG L, WICK C. Anion effects on interfacial absorption of gases in ionic liquids: a molecular dynamics study. Journal of Physical Chemistry B, 2011,  115(21): 6964-6970. DOI URL | 
| [12] | WILKES J, ZAWOROTKO M. Air and water stable 1-ethyl-3- methylimidazolium based ionic liquids. Chemical Society Chemical Communications, 1992, 13: 965-967. | 
| [13] | CHEN Y, ZHANG X, ZHANG D, et al. High performance supercapacitors based on reducedgraphene oxide in aqueous and ionic liquid electrolytes. Carbon, 2011,  49: 573-580. DOI URL | 
| [14] | BALDUCCI A, DUGAS R, TABERNA P, et al. High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte. Journal of Power Sources, 2007,  165: 922-927. DOI URL | 
| [15] | JIN J, WEN Z, LIANG X, et al. Gel polymer electrolyte with ionic liquid for high performance lithium sulfur battery. Solid State Ionics, 2012,  225: 604-607. DOI URL | 
| [16] | GELMAN D, SHVARTSEV B, EIN-ELI Y. Aluminum-air battery based on an ionic liquidelectrolyte. Journal of Physical Chemistry A, 2014, 2: 20237-20242. | 
| [17] | KAZEMIABNAVI S, ZHANG Z, THORNTON K, et al. Electrochemical stability window of imidazolium-based ionic liquids as electrolytes for lithium batteries. Journal of Physical Chemistry B, 2016,  120: 5691-5702. DOI URL | 
| [18] | LI K, SHAO Y, YAN H, et al. Lattice-contraction triggered synchronous electrochromic actuator. Nature Communications, 2018,  9: 1-11. DOI URL | 
| [19] | SUN Z, PENG Y, WANG M, et al. Electrochemical deposition of Cu metal-organic framework films for the dual analysis of pathogens. Analytical Chemistry, 2021,  93(25): 8994-9001. DOI URL | 
| [20] | WU F, FANG W, YANG X, et al. Two-dimensional-conjugated metal-organic framework with high electrical conductivity for electrochemical sensing. Journal of the Chinese Society, 2019, 66(5): 522-528. | 
| [21] | LIU J, YANG D, ZHOU Y, et al. Tricycloquinazoline-based 2D conductive metal-organic frameworks as promising electrocatalysts for CO2 reduction. Angewandte Chemie International Edition, 2021,  60(26): 14473-14479. DOI URL | 
| [22] | LI R, LI S, ZHANG Q, et al. Layer-by-layer assembled triphenylene-based MOFs films for electrochromic electrode. Inorganic Chemistry Communications, 2021, 123: 108354. | 
| [23] | GUARR T, ANSON C. Electropolymerization of ruthenium (bis (1, 10-phenanthroline) (4-methyl-4’-vinyl2, 2’-bipyridine) complexes through direct attack on the ligand ring system. Journal of Physical Chemistry, 1987, 91: 4037-4043. | 
| [24] | LIANG H, LI R, LI C, et al. Regulation of carbon content in MOF-derived hierarchical-porous NiO@C films for high-performance electrochromism. Materials Horizons, 2019,  6(3): 571-579. DOI URL | 
| [25] | SONG X, WANG X, LI Y, et al. 2D semiconducting metal-organic framework thin films for organic spin valves. Angewandte Chemie International Edition, 2020,  59(3): 1118-1123. DOI URL | 
| [26] | NINAWE P, GUPTA K, BALLAV N. Chemically integrating a 2D metal-organic framework with 2D functionalized graphene. Inorganic Chemistry, 2021,  60(24): 19079-19085. DOI URL | 
| [27] | AMMAR F, SAVEANT J. Convolution potential sweep voltammetry: Part IV. Homogenrous follow-up chemical-reactions. Journal of Electroanalytical Chemistry, 1975,  61: 251-263. DOI URL | 
| [1] | YANG Guang, ZHANG Nan, CHEN Shujin, WANG Yi, XIE An, YAN Yujie. WO3 Films Based on Porous ITO Electrodes: Preparation and Electrochromic Property [J]. Journal of Inorganic Materials, 2025, 40(7): 781-789. | 
| [2] | DONG Chenyu, ZHENG Weijie, MA Yifan, ZHENG Chunyan, WEN Zheng. Characterizations by Piezoresponse Force Microscopy on Relaxor Properties of Pb(Mg,Nb)O3-PbTiO3 Ultra-thin Films [J]. Journal of Inorganic Materials, 2025, 40(6): 675-682. | 
| [3] | WANG Yue, WANG Xin, YU Xianli. Room-temperature Ferromagnetic All-carbon Films Based on Reduced Graphene Oxide [J]. Journal of Inorganic Materials, 2025, 40(3): 305-313. | 
| [4] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. | 
| [5] | ZHAO Zhihan, GUO Peng, WEI Jing, CUI Li, LIU Shanze, ZHANG Wenlong, CHEN Rende, WANG Aiying. Ti Doped Diamond Like Carbon Films: Piezoresistive Properties and Carrier Transport Behavior [J]. Journal of Inorganic Materials, 2024, 39(8): 879-886. | 
| [6] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. | 
| [7] | SHEN Bin, ZHANG Xu, XIONG Huai, LI Haiyuan, XIE Xinglong. Preparation and Optical Properties of Sol-Gel SiO2 Antireflective Films [J]. Journal of Inorganic Materials, 2024, 39(5): 525-530. | 
| [8] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. | 
| [9] | YANG Zhiliang, YANG Ao, LIU Peng, CHEN Liangxian, AN Kang, WEI Junjun, LIU Jinlong, WU Lishu, LI Chengming. Preparation of 3-inch Diamond Film on Silicon Substrate for Thermal Management [J]. Journal of Inorganic Materials, 2024, 39(3): 283-290. | 
| [10] | LIU Song, ZHANG Faqiang, LUO Jin, LIU Zhifu. 0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3 Ferroelectric Thin Films: Preparation and Energy Storage [J]. Journal of Inorganic Materials, 2024, 39(3): 291-298. | 
| [11] | XU Xiangming, Husam N ALSHAREEF. Perspective of MXetronics [J]. Journal of Inorganic Materials, 2024, 39(2): 171-178. | 
| [12] | ZHANG Botao, SUN Tingting, WANG Lianjun, JIANG Wan. Inkjet Printing Preparation of AgCuTe Thermoelectric Thin Films [J]. Journal of Inorganic Materials, 2024, 39(12): 1325-1330. | 
| [13] | LIU Suolan, LUAN Fuyuan, WU Zihua, SHOU Chunhui, XIE Huaqing, YANG Songwang. In-situ Growth of Conformal SnO2 Layers for Efficient Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(12): 1397-1403. | 
| [14] | REN Guanyuan, LI Yiguan, DING Donghai, LIANG Ruihong, ZHOU Zhiyong. CaBi2Nb2O9 Ferroelectric Thin Films: Modulation of Growth Orientation and Properties [J]. Journal of Inorganic Materials, 2024, 39(11): 1228-1234. | 
| [15] | ZHANG Zhe, SUN Tingting, WANG Lianjun, JIANG Wan. Flexible Thermoelectric Films with Different Ag2Se Dimensions: Performance Optimization and Device Integration [J]. Journal of Inorganic Materials, 2024, 39(11): 1221-1227. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||