Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (12): 1323-1329.DOI: 10.15541/jim20210206
Special Issue: 【虚拟专辑】碳中和(2020~2021); 【虚拟专辑】钙钛矿材料(2020~2021)
• RESEARCH LETTER • Previous Articles Next Articles
WANG Yue1,2(), CUI Changsong1,2, WANG Shiwei1,2, ZHAN Zhongliang1,2,3(
)
Received:
2021-03-26
Revised:
2021-04-27
Published:
2021-12-20
Online:
2021-05-25
Contact:
ZHAN Zhongliang, professor. E-mail: zzhan@ustc.edu.cn
About author:
WANG Yue (1994-), female, PhD candidate. E-mail: wangyue@mail.sic.ac.cn
Supported by:
CLC Number:
WANG Yue, CUI Changsong, WANG Shiwei, ZHAN Zhongliang. Symmetrical La3+-doped Sr2Fe1.5Ni0.1Mo0.4O6-δ Electrode Solid Oxide Fuel Cells for Pure CO2 Electrolysis[J]. Journal of Inorganic Materials, 2021, 36(12): 1323-1329.
Electrode | Electrolyte | Performance/(A∙cm-2) | Ref. |
---|---|---|---|
La0.3Sr0.7Fe0.7Ti0.3O3 | YSZ | 0.52 (2V) | [ |
La0.6Sr0.4Fe0.9Mn0.1O3-δ-GDC | YSZ | 1.107 (2V) | [ |
La0.6Sr0.4Fe0.8Ni0.2O3-δ-GDC | YSZ | 1.03 | [ |
La0.4Sr0.6Co0.2Fe0.7Nb0.1O3-δ | YSZ | 0.442 | [ |
La0.6Ca0.4Fe0.8Ni0.2O3-δ-GDC | YSZ | 0.78 | [ |
La0.75Sr0.25Cr0.5Mn0.5O3-δ | YSZ | 0.09 | [ |
La0.3Sr0.7Cr0.3Fe0.7O3-δ | YSZ | 0.32 | [ |
(PrBa)0.95(Fe0.9Mo0.1)2O5+δ | LSGM | 0.51 (1.3V) | [ |
La0.3Sr1.7Fe1.5Ni0.1Mo0.4O6-δ | LSGM | 1.17 | This work |
Electrode | Electrolyte | Performance/(A∙cm-2) | Ref. |
---|---|---|---|
La0.3Sr0.7Fe0.7Ti0.3O3 | YSZ | 0.52 (2V) | [ |
La0.6Sr0.4Fe0.9Mn0.1O3-δ-GDC | YSZ | 1.107 (2V) | [ |
La0.6Sr0.4Fe0.8Ni0.2O3-δ-GDC | YSZ | 1.03 | [ |
La0.4Sr0.6Co0.2Fe0.7Nb0.1O3-δ | YSZ | 0.442 | [ |
La0.6Ca0.4Fe0.8Ni0.2O3-δ-GDC | YSZ | 0.78 | [ |
La0.75Sr0.25Cr0.5Mn0.5O3-δ | YSZ | 0.09 | [ |
La0.3Sr0.7Cr0.3Fe0.7O3-δ | YSZ | 0.32 | [ |
(PrBa)0.95(Fe0.9Mo0.1)2O5+δ | LSGM | 0.51 (1.3V) | [ |
La0.3Sr1.7Fe1.5Ni0.1Mo0.4O6-δ | LSGM | 1.17 | This work |
[1] |
ALBO J, ALVAREZ-GUERRA M, CASTAÑO P, et al. Towards the electrochemical conversion of carbon dioxide into methanol. Green Chemistry, 2015, 17(4): 2304-2324.
DOI URL |
[2] |
FREUND H J, ROBERTS M W. Surface chemistry of carbon dioxide. Surface Science Reports, 1996, 25(8): 225-273.
DOI URL |
[3] |
ZHENG Y, WANG J, YU B, et al. A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology. Chem. Soc. Rev., 2017, 46(5): 1427-1463.
DOI URL |
[4] |
LIU S, LIU Q, LUO J L. CO2-to-CO conversion on layered perovskite with in situ exsolved Co-Fe alloy nanoparticles: an active and stable cathode for solid oxide electrolysis cells. Journal of Materials Chemistry A, 2016, 4(44): 17521-17528.
DOI URL |
[5] |
SINGH V, MUROYAMA H, MATSUI T, et al. Feasibility of alternative electrode materials for high temperature CO2 reduction on solid oxide electrolysis cell. Journal of Power Sources, 2015, 293: 642-648.
DOI URL |
[6] |
YUE X L, IRVINE J T S. Alternative cathode material for CO2 reduction by high temperature solid oxide electrolysis cells. Journal of the Electrochemical Society, 2012, 159(8): F442-F448.
DOI URL |
[7] | LI Y, CHEN X, YANG Y, et al. Mixed-conductor Sr2Fe1.5Mo0.5O6-δ as robust fuel electrode for pure CO2 reduction in solid oxide electrolysis cell. ACS Sustainable Chemistry & Engineering, 2017, 5(12): 11403-11412. |
[8] |
LÜ H, LIN L, ZHANG X, et al. In situ investigation of reversible exsolution/dissolution of CoFe alloy nanoparticles in a Co-doped Sr2Fe1.5Mo0.5O6-δ cathode for CO2 electrolysis. Advanced Materials, 2020, 32(6): 1906193.
DOI URL |
[9] |
YUE X, IRVINE J T S. Modification of LSCM-GDC cathodes to enhance performance for high temperature CO2 electrolysis using solid oxide electrolysis cells (SOECs). Journal of Materials Chemistry A, 2017, 5(15): 7081-7090.
DOI URL |
[10] |
LU L, NI C, CASSIDY M, et al. Demonstration of high performance in a perovskite oxide supported solid oxide fuel cell based on La and Ca co-doped SrTiO3-δ. Journal of Materials Chemistry A, 2016, 4(30): 11708-11718.
DOI URL |
[11] |
QI W, GAN Y, YIN D, et al. Remarkable chemical adsorption of manganese-doped titanate for direct carbon dioxide electrolysis. Journal of Materials Chemistry A, 2014, 2(19): 6904-6915.
DOI URL |
[12] |
LIU S, LIU Q, LUO J L. Highly stable and efficient catalyst with in situ exsolved Fe-Ni alloy nanospheres socketed on an oxygen deficient perovskite for direct CO2 electrolysis. ACS Catalysis, 2016, 6(9): 6219-6228.
DOI URL |
[13] |
TIAN Y, ZHANG L, LIU Y, et al. A self-recovering robust electrode for highly efficient CO2 electrolysis in symmetrical solid oxide electrolysis cells. Journal of Materials Chemistry A, 2019, 7(11): 6395-6400.
DOI URL |
[14] | LI Y, ZHAN Z, XIA C. Highly efficient electrolysis of pure CO2 with symmetrical nanostructured perovskite electrodes. Catalysis Science & Technology, 2018, 8(4): 980-984. |
[15] |
ZHANG Y Q, LI J H, SUN Y F, et al. Highly active and redox- stable Ce-doped LaSrCrFeO based cathode catalyst for CO2 SOECs. ACS Applied Materials Interfaces, 2016, 8(10): 6457-6463.
DOI URL |
[16] | SÃNCHEZ D, ALONSO J A, GARCÍA-HERNÁNDEZ M, et al. Microscopic nature of the electron doping effects in the double perovskite Sr2-xLaxFeMoO6(0≤x≤1) series. Journal of Materials Chemistry A, 2003, 13(7): 1771-1777. |
[17] |
SUGAHARA T, OHTAKI M, SOUMA T. Thermoelectric properties of double-perovskite oxide Sr2-xMxFeMoO6 (M=Ba, La). Journal of Ceramic Society Japan, 2008, 116(1360): 1278-1282.
DOI URL |
[18] |
YANG X, CHEN J, PANTHI D, et al. Electron doping of Sr2FeMoO6-δ as high performance anode materials for solid oxide fuel cells. Journal of Materials Chemistry A, 2019, 7(2): 733-743.
DOI URL |
[19] |
AZIZI F, KAHOUL A, AZIZI A. Effect of La doping on the electrochemical activity of double perovskite oxide Sr2FeMoO6 in alkaline medium. Journal of Alloys and Compounds, 2009, 484(1/2): 555-560.
DOI URL |
[20] |
YANG X, PANTHI D, HEDAYAT N, et al. Molybdenum dioxide as an alternative catalyst for direct utilization of methane in tubular solid oxide fuel cells. Electrochemistry Communications, 2018, 86: 126-129.
DOI URL |
[21] |
SARMA D D, MAHADEVAN P, DASGUPTA T S, et al. Electronic structure of Sr2FeMoO6-δ. Physical Review Letter, 2000, 85(12): 2549-2552.
DOI URL |
[22] |
LIU Q, DONG X, XIAO G, et al. A novel electrode material for symmetrical SOFCs. Advanced Materials, 2010, 22(48): 5478-5482.
DOI URL |
[23] |
DAI N, FENG J, WANG Z, et al. Synthesis and characterization of B-site Ni-doped perovskites Sr2Fe1.5-xNixMo0.5O6-δ (x = 0, 0.05, 0.1, 0.2, 0.4) as cathodes for SOFCs. Journal of Materials Chemistry A, 2013, 1(45): 14147-14153.
DOI URL |
[24] |
LU X, YANG Y, DING Y, et al. Mo-doped Pr0.6Sr0.4Fe0.8Ni0.2O3-δ as potential electrodes for intermediate-temperature symmetrical solid oxide fuel cells. Electrochimica Acta, 2017, 227: 33-40.
DOI URL |
[25] | PENG X, TIAN Y, LIU Y, et al. An efficient symmetrical solid oxide electrolysis cell with LSFM-based electrodes for direct electrolysis of pure CO2. Journal of CO2 Utilization, 2020, 36: 18-24. |
[26] |
WANG R, DOGDIBEGOVIC E, LAU G Y, et al. Metal-supported solid oxide electrolysis cell (MS-SOEC) with significantly enhanced catalysis. Energy Technology, 2019, 7(5): 1801154-1801166.
DOI URL |
[27] |
CAO Z, WEI B, MIAO J, et al. Efficient electrolysis of CO2 in symmetrical solid oxide electrolysis cell with highly active La0.3Sr0.7Fe0.7Ti0.3O3 electrode material. Electrochemistry Communications, 2016, 69: 80-83.
DOI URL |
[28] |
TIAN Y, ZHENG H, ZHANG L, et al. Direct electrolysis of CO2 in symmetrical solid oxide electrolysis cell based on La0.6Sr0.4Fe0.8Ni0.2O3-δ electrode. Journal of The Electrochemical Society, 2018, 165(2): F17-F23.
DOI URL |
[29] | YANG Z, MA C, WANG N, et al. Electrochemical reduction of CO2 in a symmetrical solid oxide electrolysis cell with La0.4Sr0.6Co0.2Fe0.7Nb0.1O3-δ electrode. Journal of CO2 Utilization, 2019, 33: 445-451. |
[30] |
XU S, LI S, YAO W, et al. Direct electrolysis of CO2 using an oxygen-ion conducting solid oxide electrolyzer based on La0.75Sr0.25Cr0.5Mn0.5O3-δ electrode. Journal of Power Sources, 2013, 230: 115-121.
DOI URL |
[31] |
ADDO P K, MOLERO-SANCHEZ B, CHEN M, et al. CO/CO2 study of high performance La0.3Sr0.7Fe0.7Cr0.3O3-δ reversible SOFC electrodes. Fuel Cells, 2015, 15(5): 689-696.
DOI URL |
[32] |
LU C, NIU B, YI W, et al. Efficient symmetrical electrodes of PrBaFe2-xCoxO5+δ (x=0, 0.2, 0.4) for solid oxide fuel cells and solid oxide electrolysis cells. Electrochimica Acta, 2020, 358: 136916-136927.
DOI URL |
[1] | QU Mujing, ZHANG Shulan, ZHU Mengmeng, DING Haojie, DUAN Jiaxin, DAI Henglong, ZHOU Guohong, LI Huili. CsPbBr3@MIL-53 Nanocomposite Phosphors: Synthesis, Properties and Applications in White LEDs [J]. Journal of Inorganic Materials, 2024, 39(9): 1035-1043. |
[2] | XIAO Zichen, HE Shihao, QIU Chengyuan, DENG Pan, ZHANG Wei, DAI Weideren, GOU Yanzhuo, LI Jinhua, YOU Jun, WANG Xianbao, LIN Liangyou. Nanofiber-modified Electron Transport Layer for Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(7): 828-834. |
[3] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[4] | CHEN Tian, LUO Yuan, ZHU Liu, GUO Xueyi, YANG Ying. Organic-inorganic Co-addition to Improve Mechanical Bending and Environmental Stability of Flexible Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(5): 477-484. |
[5] | YU Man, GAO Rongyao, QIN Yujun, AI Xicheng. Influence of Upconversion Luminescent Nanoparticles on Hysteresis Effect and Ion Migration Kinetics in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2024, 39(4): 359-366. |
[6] | CHEN Zhengpeng, JIN Fangjun, LI Mingfei, DONG Jiangbo, XU Renci, XU Hanzhao, XIONG Kai, RAO Muming, CHEN Chuangting, LI Xiaowei, LING Yihan. Double Perovskite Sr2CoFeO5+δ: Preparation and Performance as Cathode Material for Intermediate-temperature Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2024, 39(3): 337-344. |
[7] | ZHOU Zezhu, LIANG Zihui, LI Jing, WU Congcong. Preparation of MAPbI3 Perovskite Solar Cells/Module via Volatile Solvents [J]. Journal of Inorganic Materials, 2024, 39(11): 1197-1204. |
[8] | LI Qianyuan, LI Jiwei, ZHANG Yuhan, LIU Yankang, MENG Yang, CHU Yu, ZHU Yijia, XU Nuoyan, ZHU Liang, ZHANG Chuanxiang, TAO Haijun. Enhanced Photovoltaic Performance of Perovskite Solar Cells by PbTiO3 Modification and Polarization Treatment [J]. Journal of Inorganic Materials, 2024, 39(11): 1205-1211. |
[9] | DAI Xiaodong, ZHANG Luwei, QIAN Yicheng, REN Zhixin, CAO Huanqi, YIN Shougen. Controlling Vertical Composition Gradients in Sn-Pb Mixed Perovskite Solar Cells via Solvent Engineering [J]. Journal of Inorganic Materials, 2023, 38(9): 1089-1096. |
[10] | DONG Siyin, TIE Shujie, YUAN Ruihan, ZHENG Xiaojia. Research Progress on Low-dimensional Halide Perovskite Direct X-ray Detectors [J]. Journal of Inorganic Materials, 2023, 38(9): 1017-1030. |
[11] | WANG Run, XIANG Hengyang, ZENG Haibo. Carrier Balanced Distribution Regulation of Multi-emissive Centers in Tandem PeLEDs [J]. Journal of Inorganic Materials, 2023, 38(9): 1062-1068. |
[12] | WANG Machao, TANG Yangmin, DENG Mingxue, ZHOU Zhenzhen, LIU Xiaofeng, WANG Jiacheng, LIU Qian. Cs2Ag0.1Na0.9BiCl6:Tm3+ Double Perovskite: Coprecipitation Preparation and Near-infrared Emission [J]. Journal of Inorganic Materials, 2023, 38(9): 1083-1088. |
[13] | HAN Xu, YAO Hengda, LYU Mei, LU Hongbo, ZHU Jun. Application of Single-molecule Liquid Crystal Additives in CH(NH2)2PbI3 Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 1097-1102. |
[14] | FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 2023, 38(9): 1103-1109. |
[15] | CAI Kai, JIN Zhiwen. Photodetector Based on Two-dimensional Perovskite (PEA)2PbI4 [J]. Journal of Inorganic Materials, 2023, 38(9): 1069-1075. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||