Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (7): 725-732.DOI: 10.15541/jim20200594
• RESEARCH ARTICLE • Previous Articles Next Articles
LI Tie1(), LI Yue1, WANG Yingyi2, ZHANG Ting1
Received:
2020-10-19
Revised:
2021-01-27
Published:
2021-07-20
Online:
2021-03-01
About author:
LI Tie(1984-), male, associate professor. E-mail:tli2014@sinano.ac.cn
Supported by:
CLC Number:
LI Tie, LI Yue, WANG Yingyi, ZHANG Ting. Preparation and Catalytic Properties of Graphene-Bismuth Ferrite Nanocrystal Nanocomposite[J]. Journal of Inorganic Materials, 2021, 36(7): 725-732.
Sample | SBET/(m2·g-1) | SLangmuir/(m2·g-1) | ST-method/(m2·g-1) | Vpore, HK method/(cm3·g-1) | Dpore, HK method/nm |
---|---|---|---|---|---|
RGO-BFO | 23.124 | 39.536 | 23.1240 | 0.00651 | 0.3675 |
BFO | 4.763 | 7.237 | 1.8463 | 0.15020 | 1.9020 |
Table 1 Comparision of specific surface area between RGO-BFO composite and BFO
Sample | SBET/(m2·g-1) | SLangmuir/(m2·g-1) | ST-method/(m2·g-1) | Vpore, HK method/(cm3·g-1) | Dpore, HK method/nm |
---|---|---|---|---|---|
RGO-BFO | 23.124 | 39.536 | 23.1240 | 0.00651 | 0.3675 |
BFO | 4.763 | 7.237 | 1.8463 | 0.15020 | 1.9020 |
Fig. 3 Structure and composition analysis of RGO-BFO nanocrystal nanocomposite (a) XRD patterns; (b) FT-IR spectra; (c) Raman spectra; (d) TG curves; (e-f) XPS peaks
Fig. 4 Physical properties and photocatalytic MB degradation performances of RGO-BFO nanocrystal nanocomposite (a) M-H magnetic curve; (b-c) UV-Vis absorption spectra and calculated result of optical band gap; (d) Absorption spectra of MB solution under various time nodes; (e) Degradation effects of various controlled samples; (f) Cyclic performance of the composite
Fig. 5 Photoelectric response mechanism of RGO-BFO nanocrystal nanocomposite (a) Photogenerated currents of the controlled sample; (b) Degradation mechanism of the nanocrystal composite
[1] | 卢鹏, 胡雪利, 赖昕, 等. 铁酸铋的制备及其在光催化领域的研究进展. 应用化工, 2018,6(47):1270-1273. |
[2] |
ILIEV M N, LITVINCHUK A P, LEE H G, et al. Raman spectroscopy of SrRuO3 near the paramagnetic-to-ferromagnetic phase transition. Physical Review B, 1999,59(1):364-369.
DOI URL |
[3] |
ALI S, HUMAYUN M, PI W, et al. Fabrication of BiFeO3-g-C3N4-WO3 Z-scheme heterojunction as highly efficient visible-light photocatalyst for water reduction and 2,4-dichlorophenol degradation: insight mechanism. Journal of Hazardous Materials, 2020,397:122708.
DOI URL |
[4] |
LIU J, NIU M, WANG L, et al. Effect of tuning A/B substitutions on multiferroic characteristics of BiFeO3-based ternary system ceramics. Journal of Magnetism and Magnetic Materials, 2020,510:166928.
DOI URL |
[5] |
ZHAO R, MA N, SONG K, et al. Boosting photocurrent via heating BiFeO3 materials for enhanced self-powered UV photodetectors. Advanced Functional Materials, 2020,30:1906232.
DOI URL |
[6] |
HAUMONT R, KREISEL J, BOUVIER P, et al. Phonon anomalies and the ferroelectric phase transition in multiferroic BiFeO3. Physical Review B, 2006,73(13):132101.
DOI URL |
[7] |
ZOU C, LIU S, SHEN Z, et al. Efficient removal of ammonia with a novel graphene-supported BiFeO3 as a reusable photocatalyst under visible light. Chinese Journal Catalysis, 2017,38(1):20-28.
DOI URL |
[8] |
SI Y, XIA Y, SHANG S, et al. Enhanced visible light driven photocatalytic behavior of BiFeO3/reduced graphene oxide composites. Nanomaterials, 2018,8:526.
DOI URL |
[9] |
GHOSH S, DASGUPTA S, SEN A, et al. Low-temperature synthesis of nanosized bismuth ferrite by soft chemical route. Journal of the American Ceramic Society, 2005,88(5):1349-1952.
DOI URL |
[10] |
KHOMCHENKO V A, SHVARTSMAN V V, BORISOV P, et al. Effect of Gd substitution on the crystal structure and multiferroic properties of BiFeO3. Acta Materialia, 2009,57(17):5137-5145.
DOI URL |
[11] |
KIANI M, RIZWAN S, IRFAN S. Facile synthesis of a BiFeO3/nitrogen-doped graphene nanocomposite system with enhanced photocatalytic activity. Journal of Physics and Chemistry Solids, 2018,121:8-16.
DOI URL |
[12] |
LIN X, SAMIA A C S. Synthesis, assembly and physical properties of magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2006,305(1):100-109.
DOI URL |
[13] |
ZHOU Q, LIN Y, ZHANG K, et al. Reduced graphene oxide/BiFeO3 nanohybrids-based signal-on photoelectrochemical sensing system for prostate-specific antigen detection coupling with magnetic microfluidic device. Biosensors and Bioelectronics, 2018,101:146-152.
DOI URL |
[14] |
LATTUADA M, HATTON T A. Preparation and controlled self-assembly of Janus magnetic nanoparticles. Journal of the American Chemical Society, 2007,129(42):12878-12889.
DOI URL |
[15] |
CHENZ, WANG Y, ZHENG D, et al. Polarization tunable and enhanced photovoltaic properties in tetragonal-like BiFeO3 epitaxial films with graphene top electrode. Journal of Alloys and Compounds, 2019,811:152013.
DOI URL |
[16] | 胡玉林, 李永进, 谢燕春, 等. 掺Ni铁酸铋纳米粉的制备及光催化性能. 材料导报(B), 2020,34(9):18009-18013. |
[17] | SEUNG W L, CHUL S K. Growth of multiferroics BiFeO3 thin films by Sol-Gel method. Journal of Magnetism and Magnetic Materials, 2006,304(12):772-774. |
[18] |
IRFAN S, LIANG G, LI F, et al. Effect of graphene oxide nano-sheets on structural, morphological and photocatalytic activity ofBiFeO3-based nanostructures. Nanomaterials, 2019,9(9):1337.
DOI URL |
[19] | PARK T J, MAO Y B, STANISLAUS S. Synthesis and characterization of multiferroic BiFeO3 nanotubes. Chemical Communications, 2004,12(23):2708-2709. |
[20] |
SHEN J, HU Y, QIN C, et al. Layer-by-layer self-assembly of multiwalled carbon nanotube polyelectrolytes prepared by in situ radical polymerization. Langmuir, 2008,24(8):3993-3997.
DOI URL |
[21] |
KIANIM, KIANI A B, KHAN S A, et al. Facile synthesis of Gd and Sn co-doped BiFeO3 supported on nitrogen doped graphene for enhanced photocatalytic activity. Journal of Physics and Chemistry of Solids, 2019,130:222-229.
DOI URL |
[22] |
CARUSO F, LICHTENFELD H, DONATH E, et al. Investigation of electrostatic interactions in polyelectrolyte multilayer films: binding of anionic fluorescent probes to layers assembled onto colloids. Macromolecules, 1999,32(7):2317-2328.
DOI URL |
[23] |
LIU T, XU Y B, FENG S S, et al. A facile route to the synthesis of BiFeO3 at low temperature. Journal of the American Ceramic Society, 2011,94(9):3060-3063.
DOI URL |
[24] |
ZHANG S X, WANG L, GAO Z S. Ferromagnetism in sub-micron scale BiFeO3. Materials Letters. 2011,65(21/22):3309-3312.
DOI URL |
[25] |
REN Y, NAN F, YOU L, et al. Enhanced photoelectrochemical performance in reducedgraphene oxide/BiFeO3 heterostructures. Small, 2017,13(16):1603457.
DOI URL |
[26] |
MKHOYAN K A, CONTRYMAN A W, SILCOX J, et al. Atomic and electronic structure of graphene-oxide. Nano Letters, 2009,9(3):1058-1063
DOI URL |
[27] |
MOITRA D, GHOSH B K, CHANDEL M, et al. Synthesis of a BiFeO3 nanowire-reduced graphene oxide based magnetically separable nanocatalyst and its versatile catalytic activity towards multiple organic reactions. RSC Advances, 2016,6:97941.
DOI URL |
[28] |
EDA G, CHHOWALLA M. Graphene-based composite thin films for electronics. Nano Letters, 2009,9(2):814-818.
DOI URL |
[29] |
BLAKE P, BRIMICOMBE P D, NAIR R R, et al. Graphene-based liquid crystal device. Nano Letters, 2008,8(6):1704-1708.
DOI URL |
[30] |
LI Z, SHEN Y, GUAN Y, et al. Bandgap engineering and enhanced interface coupling of graphene-BiFeO3 nanocomposites as efficient photocatalysts under visible light. Journal of Materials Chemistry A, 2014,2:1967-1973.
DOI URL |
[1] | LI Honglan, ZHANG Junmiao, SONG Erhong, YANG Xinglin. Mo/S Co-doped Graphene for Ammonia Synthesis: a Density Functional Theory Study [J]. Journal of Inorganic Materials, 2024, 39(5): 561-568. |
[2] | SUN Chuan, HE Pengfei, HU Zhenfeng, WANG Rong, XING Yue, ZHANG Zhibin, LI Jinglong, WAN Chunlei, LIANG Xiubing. SiC-based Ceramic Materials Incorporating GNPs Array: Preparation and Mechanical Characterization [J]. Journal of Inorganic Materials, 2024, 39(3): 267-273. |
[3] | YE Maosen, WANG Yao, XU Bing, WANG Kangkang, ZHANG Shengnan, FENG Jianqing. II/Z-type Bi2MoO6/Ag2O/Bi2O3 Heterojunction for Photocatalytic Degradation of Tetracycline under Visible Light Irradiation [J]. Journal of Inorganic Materials, 2024, 39(3): 321-329. |
[4] | DAI Le, LIU Yang, GAO Xuan, WANG Shuhao, SONG Yating, TANG Mingmeng, DMITRY V Karpinsky, LIU Lisha, WANG Yaojin. Self-polarization Achieved by Compositionally Gradient Doping in BiFeO3 Thin Films [J]. Journal of Inorganic Materials, 2024, 39(1): 99-106. |
[5] | WANG Yanli, QIAN Xinyi, SHEN Chunyin, ZHAN Liang. Graphene Based Mesoporous Manganese-Cerium Oxides Catalysts: Preparation and Low-temperature Catalytic Reduction of NO [J]. Journal of Inorganic Materials, 2024, 39(1): 81-89. |
[6] | YANG Pingjun, LI Tiehu, LI Hao, DANG Alei. Effect of Graphene on Graphitization, Electrical and Mechanical Properties of Epoxy Resin Carbon Foam [J]. Journal of Inorganic Materials, 2024, 39(1): 107-112. |
[7] | DONG Yiman, TAN Zhan’ao. Research Progress of Recombination Layers in Two-terminal Tandem Solar Cells Based on Wide Bandgap Perovskite [J]. Journal of Inorganic Materials, 2023, 38(9): 1031-1043. |
[8] | FAN Jiashun, XIA Donglin, LIU Baoshun. Temperature Dependent Transient Photoconductive Response of CsPbBr3 NCs [J]. Journal of Inorganic Materials, 2023, 38(8): 893-900. |
[9] | CHEN Saisai, PANG Yali, WANG Jiaona, GONG Yan, WANG Rui, LUAN Xiaowan, LI Xin. Preparation and Properties of Green-yellow Reversible Electro-thermochromic Fabric [J]. Journal of Inorganic Materials, 2022, 37(9): 954-960. |
[10] | SUN Ming, SHAO Puzhen, SUN Kai, HUANG Jianhua, ZHANG Qiang, XIU Ziyang, XIAO Haiying, WU Gaohui. First-principles Study on Interface of Reduced Graphene Oxide Reinforced Aluminum Matrix Composites [J]. Journal of Inorganic Materials, 2022, 37(6): 651-659. |
[11] | AN Lin, WU Hao, HAN Xin, LI Yaogang, WANG Hongzhi, ZHANG Qinghong. Non-precious Metals Co5.47N/Nitrogen-doped rGO Co-catalyst Enhanced Photocatalytic Hydrogen Evolution Performance of TiO2 [J]. Journal of Inorganic Materials, 2022, 37(5): 534-540. |
[12] | WANG Hongli, WANG Nan, WANG Liying, SONG Erhong, ZHAO Zhankui. Hydrogen Generation from Formic Acid Boosted by Functionalized Graphene Supported AuPd Nanocatalysts [J]. Journal of Inorganic Materials, 2022, 37(5): 547-553. |
[13] | ZHANG Guoqing, QIN Peng, HUANG Fuqiang. Reversible Conversion between Space-confined Lead Ions and Perovskite Nanocrystals for Confidential Information Storage [J]. Journal of Inorganic Materials, 2022, 37(4): 445-451. |
[14] | DONG Shurui, ZHAO Di, ZHAO Jing, JIN Wanqin. Effect of Ionized Amino Acid on the Water-selective Permeation through Graphene Oxide Membrane in Pervaporation Process [J]. Journal of Inorganic Materials, 2022, 37(4): 387-394. |
[15] | JIANG Lili, XU Shuaishuai, XIA Baokai, CHEN Sheng, ZHU Junwu. Defect Engineering of Graphene Hybrid Catalysts for Oxygen Reduction Reactions [J]. Journal of Inorganic Materials, 2022, 37(2): 215-222. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||