Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (7): 733-737.DOI: 10.15541/jim20200621
• RESEARCH ARTICLE • Previous Articles Next Articles
MA Delong1,2(), BAO Yiwang1,2, WAN Detian1,2, QIU Yan2, ZHENG Dezhi2, FU Shuai2
Received:
2020-11-02
Revised:
2020-11-27
Published:
2021-07-20
Online:
2020-12-10
Contact:
BAO Yiwang, professor. E-mail:baoyw@ctc.ac.cn
About author:
MA Delong(1993-), male, PhD candidate. E-mail:madelong@ctc.ac.cn
Supported by:
CLC Number:
MA Delong, BAO Yiwang, WAN Detian, QIU Yan, ZHENG Dezhi, FU Shuai. Pre-crack and Fracture Toughness Evaluation of Ceramic Thin Plates[J]. Journal of Inorganic Materials, 2021, 36(7): 733-737.
Material | Elastic modulus/GPa | Bending strength/MPa | Vickers hardness/GPa |
---|---|---|---|
Al2O3 | (305±10) | (315±20) | (19.8±0.1) |
SiC | (360±12) | (340±28) | (20.1±0.3) |
Si3N4 | (280±8) | (425±33) | (15.9±0.6) |
Table 1 Basic mechanical properties of three types of ceramic thin plates
Material | Elastic modulus/GPa | Bending strength/MPa | Vickers hardness/GPa |
---|---|---|---|
Al2O3 | (305±10) | (315±20) | (19.8±0.1) |
SiC | (360±12) | (340±28) | (20.1±0.3) |
Si3N4 | (280±8) | (425±33) | (15.9±0.6) |
Fig. 5 Microscopic images of composite bonded by ceramic thin plate and brass beam (a) Machining incision in the edge of ceramic thin plate specimen; (b) Composite bonded by ceramic thin plate and brass beam bonded to form a composite
Fig. 8 In- situ observation of crack initiation and extension in Al2O3 plate (a) Initial crack; (b) Continue loading until the crack meet the requirements of fracture toughness test; (c) Crack tip
Material type | Thickness of the specimen/mm | Number of specimen | Number of successful pre-cracks | Fracture toughness/ (MPa∙m1/2) |
---|---|---|---|---|
Al2O3 | 0.6 | 15 | 15 | (4.17±0.26) |
3 | 10 | 8 | (4.21±0.25) | |
SiC | 0.6 | 15 | 14 | (3.81±0.24) |
3 | 10 | 7 | (3.72±0.22) | |
Si3N4 | 0.6 | 15 | 14 | (5.28±0.31) |
3 | 10 | 8 | (5.36±0.33) |
Table 2 Fracture toughness of ceramic thin plate and ceramic block
Material type | Thickness of the specimen/mm | Number of specimen | Number of successful pre-cracks | Fracture toughness/ (MPa∙m1/2) |
---|---|---|---|---|
Al2O3 | 0.6 | 15 | 15 | (4.17±0.26) |
3 | 10 | 8 | (4.21±0.25) | |
SiC | 0.6 | 15 | 14 | (3.81±0.24) |
3 | 10 | 7 | (3.72±0.22) | |
Si3N4 | 0.6 | 15 | 14 | (5.28±0.31) |
3 | 10 | 8 | (5.36±0.33) |
[1] |
KHAZAKA R, MENDIZABAL L, HENRY D, et al. Survey of high- temperature reliability of power electronics packaging components. IEEE Trans. Power Electron., 2015,30(5):2456-2464.
DOI URL |
[2] |
MIYAZAKI H, YOSHIZAWA Y, HIRAO K, et al. Measurements of fracture toughness of ceramic thin plates through single-edge V-notch plate method. J. Eur. Ceram. Soc., 2016,36(16):4327-4331.
DOI URL |
[3] | 曾小亮, 孙蓉, 于淑会, 等. 电子封装基板材料研究进展及发展趋势. 集成技术, 2014,3(6):76-83. |
[4] |
SMIRNOV S V, ROMANOV B P, STRELOV K K. The failure of thin ceramic plates under intensive heat flows. Ceram. Int., 1991,17(3):205-206.
DOI URL |
[5] |
MIYAZAKI H, YOSHIZAWA Y I, HIRAO K, et al. Evaluation of fracture toughness of ceramic thin plates through modified single edge-precracked plate method. Scr. Mater., 2015,103:34-36.
DOI URL |
[6] |
STROBL S, RASCHE S, KRAUTGASSER C, et al. Fracture toughness testing of small ceramic discs and plates. J. Eur. Ceram. Soc., 2014,34(6):1637-1642.
DOI URL |
[7] |
MIYAZAKI H, YOSHIZAWA Y I, HIRAO K, et al. Round-robin test on the fracture toughness of ceramic thin plates through modified single edge-precracked plate method. J. Eur. Ceram. Soc., 2016,36(13):3245-3248.
DOI URL |
[8] |
BAO Y W, ZHOU Y C. A new method for precracking beam for fracture toughness experiments. J. Am. Ceram. Soc., 2010,89(3):1118-1121.
DOI URL |
[9] |
SAKAI M, BRADT R C. Fracture toughness testing of brittle materials. Metall. Rev., 1993,38(2):53-78.
DOI URL |
[10] | 万德田, 魏永金, 包亦望, 等. 陶瓷断裂韧性测试方法准确性和简便性比较分析. 硅酸盐学报, 2019,47(8):1080-1088. |
[11] | ISO 21113-2018, Fine ceramics (advanced ceramics, advanced technical ceramics)—Test method for fracture toughness of monolithic ceramic thin plates at room temperature. |
[12] |
AN K, CHEN L X, YAN X B, et al. Fracture strength and toughness of chemical-vapor-deposited polycrystalline diamond films. Ceram. Int., 2018,44(15):17845-17851.
DOI URL |
[13] |
LU F X, JIANG Z, TANG W Z, et al. Accurate measurement of strength and fracture toughness for miniature-size thick diamond- film samples by three-point bending at constant loading rate. Diamond Relat. Mater., 2001,10(3-7):770-774.
DOI URL |
[14] | GB/T 23806-2009, 精细陶瓷断裂韧性试验方法单边预裂纹梁(SEPB)法. |
[1] | SUN Chuan, HE Pengfei, HU Zhenfeng, WANG Rong, XING Yue, ZHANG Zhibin, LI Jinglong, WAN Chunlei, LIANG Xiubing. SiC-based Ceramic Materials Incorporating GNPs Array: Preparation and Mechanical Characterization [J]. Journal of Inorganic Materials, 2024, 39(3): 267-273. |
[2] | WANG Xueyao, WANG Wugang, LI Yingwei, PENG Qi, LIANG Ruihong. Correlation between Constitutive Behavior and Fracture Performance of PZT Ceramics [J]. Journal of Inorganic Materials, 2023, 38(7): 839-844. |
[3] | LIANG Hanqin, YIN Jinwei, ZUO Kaihui, XIA Yongfeng, YAO Dongxu, ZENG Yuping. Mechanical and Dielectric Properties of Hot-pressed Si3N4 Ceramics with BaTiO3 Addition [J]. Journal of Inorganic Materials, 2021, 36(5): 535-540. |
[4] | ZHANG Biao, YANG Chang-An, SHI Pei. Synthesis of Graphene/Hydroxyapatite Composite Bioceramics via Plasma Activated Sintering [J]. Journal of Inorganic Materials, 2018, 33(12): 1355-1359. |
[5] | XING Yuan-Yuan, WU Hai-Bo, LIU Xue-Jian, HUANG Zheng-Ren. Grain Composition on Solid-state-sintered SiC Ceramics [J]. Journal of Inorganic Materials, 2018, 33(11): 1167-1172. |
[6] | LI Shu-Hui, PAN Xiu-Hong, LIU Yan, JIN Wei-Qing, ZHANG Ming-Hui, YU Jian-Ding, CHEN Kun, AI Fei. Interactions Between Bubble and Interface During KTa1-xNbxO3 Crystal Growth [J]. Journal of Inorganic Materials, 2017, 32(11): 1223-1227. |
[7] | MA Rong-Bin, CHENG Xu-Dong, ZOU Jun, LI Qing-Yu, HUANG Xia. Toughness and Thermal Shock of SiC Fiber/Yttria-stabilized-zirconia Composite Thick Thermal Barrier Coatings [J]. Journal of Inorganic Materials, 2016, 31(2): 190-194. |
[8] | LIANG Ling-Jiang, LI Kai, YAN Dong, MA Ben, YANG Jia-Jun, PU Jian, CHI Bo, LI Jian. Mechanical Property and Deformation Behavior of SOFCs [J]. Journal of Inorganic Materials, 2015, 30(6): 633-638. |
[9] | WANG Cui-Feng, CHIOU Shi-Yung, OU Keng-Liang, CAI Zhang-Ting. Optimal Process Parameters for 3Y-TZP/TiN Conductive Polycrystal by Taguchi Method [J]. Journal of Inorganic Materials, 2012, 27(5): 529-535. |
[10] | DENG Yang-Fang, ZHANG Jun, SU Hai-Jun, SONG Kan, LIU Lin, FU Heng-Zhi. Microstructure and Fracture Toughness of Al2O3/Er3Al5O12 Eutectic Ceramic Prepared by Laser Zone Remelting [J]. Journal of Inorganic Materials, 2011, 26(8): 841-846. |
[11] | SUN Rong,XU Tao,KOU Guan-Tao,XUE Qun-Ji. Micro-mechanical Properties and Micro-structure of Ar+ Ion Implanted Single-crystal Silicon [J]. Journal of Inorganic Materials, 2005, 20(3): 759-763. |
[12] | GAO Jian-Ying,JIANG Wan,WANG Gang. Synthesis and Property of La2O3-doped MoSi2 [J]. Journal of Inorganic Materials, 2004, 19(6): 1334-1338. |
[13] | WANG Rui,WANG Guang-Feng,GUO Xing-Feng,ZHANG Mei. Mode I Interlaminar Fracture Toughness of Stitched Laminates [J]. Journal of Inorganic Materials, 2004, 19(5): 1123-1128. |
[14] | CHEN Dian-Ying,ZHANG Bao-Lin,ZHUANG Han-Rui,LI Wen-Lan. Effects of Seeding with β-Si3N4 Rod Crystals on Mechanical Properties of Silicon Nitride Ceramics [J]. Journal of Inorganic Materials, 2003, 18(5): 1139-1142. |
[15] | YANG Wei-You,XIE Zhi-Peng,MIAO He-Zhuo. Advances of Abnormal Grain Growth to Toughen A12O3 Ceramics [J]. Journal of Inorganic Materials, 2003, 18(5): 961-972. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||