[1] SADAT-SHOJAI M, KHORASANI M T, DINPANAH-KHOSHDARGI E,et al. Synthesis methods for nanosized hydroxyapatite with diverse structure. Acta Biomaterialia, 2013, 9(8): 7591-7621. [2] LANDI E, TAMPIERI A, MATTIOLI-BELMONTE M,et al. Biomimetic Mg-and Mg, CO3-substituted hydroxyapatites: synthesis characterization and in vitro behaviour. Journal of the European Ceramic Society, 2006, 26(13): 2593-2601. [3] WANG H, LEE J K, MOURSI A,et al. Ca/P ratio effects on the degradation of hydroxyapatite in vitro. Journal of Biomedical Materials Research Part A, 2003, 67(2): 599-608. [4] SHI Z, HUANG X, CAI Y,et al. Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells. Acta Biomaterialia, 2009, 5(1): 338-345. [5] THIAN E, KONISHI T, KAWANOBE Y, et al. Zinc-substituted hydroxyapatite: a biomaterial with enhanced bioactivity and antibacterial properties. Journal of Materials Science: Materials in Medicine, 2013, 24(2): 437-445. [6] XIU Z, LÜ M, LIU S,et al. Barium hydroxyapatite nanoparticles synthesized by citric acid Sol-Gel combustion method. Materials Research Bulletin, 2005, 40(9): 1617-1622. [7] GE X, LENG Y, BAO C, et al. Antibacterial coatings of fluoridated hydroxyapatite for percutaneous implants. Journal of Biomedical Materials Research - Part A, 2010, 95(2): 588-599. [8] GE X, LENG Y, REN F, et al. Integrity and zeta potential of fluoridated hydroxyapatite nanothick coatings for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4(7): 1046-1056. [9] GE X, REN C, LU X,et al. Surfactant-free electrochemical synthesis of fluoridated hydroxyapatite nanorods for biomedical applications. Ceramics International, 2019, 45(14): 17336-17343. [10] YOUNESS R A, TAHA M A, IBRAHIM M.In vitro bioactivity, physical and mechanical properties of carbonated-fluoroapatite during mechanochemical synthesis. Ceramics International, 2018, 44(17): 21323-21329. [11] SEDELNIKOVA M B, KOMAROVA E G, SHARKEEV Y P,et al. Modification of titanium surface via Ag-, Sr-and Si-containing micro-arc calcium phosphate coating. Bioactive Materials, 2019, 4: 224-235. [12] BOANINI E, TORRICELLI P, GAZZANO M,et al. Combined effect of strontium and zoledronate on hydroxyapatite structure and bone cell response. Biomaterials, 2014, 35(21): 5619-5626. [13] PENG S, ZHOU G, LUK K D,et al. Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Cellular Physiology and Biochemistry, 2009, 23(1/2/3): 165-174. [14] ZHOU J, LI B, LU S,et al. Regulation of osteoblast proliferation and differentiation by interrod spacing of Sr-HA nanorods on microporous titania coatings. ACS Applied Materials & Interfaces, 2013, 5(11): 5358-5365. [15] LAURENCIN D, WONG A, HANNA J V,et al. A high-resolution 43Ca solid-state NMR study of the calcium sites of hydroxyapatite. Journal of the American Chemical Society, 2008, 130(8): 2412-2413. [16] LI P, JIA Z, WANG Q,et al. A resilient and flexible chitosan/silk cryogel incorporated Ag/Sr co-doped nanoscale hydroxyapatite for osteoinductivity and antibacterial properties. Journal of Materials Chemistry B, 2018, 6(45): 7427-7438. [17] ZEGLINSKI J, NOLAN M, BREDOL M,et al. Unravelling the specific site preference in doping of calcium hydroxyapatite with strontium from ab initio investigations and Rietveld analyses. Physical Chemistry Chemical Physics, 2012, 14(10): 3435-3443. [18] GENG Z, CUI Z, LI Z,et al. Synthesis, characterization and the formation mechanism of magnesium-and strontium-substituted hydroxyapatite. Journal of Materials Chemistry B, 2015, 3(18): 3738-3746. [19] BIGI A, BOANINI E, CAPUCCINI C,et al. Strontium-substituted hydroxyapatite nanocrystals. Inorganica Chimica Acta, 2007, 360(3): 1009-1016. [20] TERRA J, DOURADO E R, EON J G,et al. The structure of strontium-doped hydroxyapatite: an experimental and theoretical study. Physical Chemistry Chemical Physics, 2009, 11(3): 568-577. [21] WEBSTER T J, MASSA-SCHLUETER E A, SMITH J L,et al. Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomaterials, 2004, 25(11): 2111-2121. [22] LANDI E, TAMPIERI A, CELOTTI G,et al. Densification behaviour and mechanisms of synthetic hydroxyapatites. Journal of the European Ceramic Society, 2000, 20(14/15): 2377-2387. [23] WANG Q, LI P, TANG P,et al. Experimental and simulation studies of strontium/fluoride-codoped hydroxyapatite nanoparticles with osteogenic and antibacterial activities. Colloids and Surfaces B: Biointerfaces, 2019, 182: 110359. [24] LI Z H, WU J M, HOAN S J,et al. Preparation and property of strontium-substituted hydroxyapatite. Journal of Inorganic Materials, 2011, 26(1): 49-54. [25] LI Z Y, LAM W M, YANG C,et al. Chemical composition, crystal size and lattice structural changes after incorporation of strontium into biomimetic apatite. Biomaterials, 2007, 28(7): 1452-1460. [26] WANG Q, TANG P, GE X,et al. Experimental and simulation studies of strontium/zinc-codoped hydroxyapatite porous scaffolds with excellent osteoinductivity and antibacterial activity. Applied Surface Science, 2018, 462: 118-126. [27] MATSUNAGA K, MURATA H.Strontium substitution in bioactive calcium phosphates: a first-principles study.The Journal of Physical Chemistry B, 2009, 113(11): 3584-3589. |