Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (3): 367-372.DOI: 10.15541/jim20190434
Special Issue: 2020年环境材料论文精选(一)放射性元素去除; 【虚拟专辑】放射性污染物去除(2020~2021)
Previous Articles Next Articles
LI Guodong1,JI Guoxun1(),SUN Xinli1,DU Wei2,LIU Wei2(
),WANG Shuao3
Received:
2019-08-16
Revised:
2019-09-08
Published:
2020-03-20
Online:
2019-10-23
About author:
LI Guodong (1994-), male, Master candidate. E-mail: guodong_l@163.com
Supported by:
CLC Number:
LI Guodong, JI Guoxun, SUN Xinli, DU Wei, LIU Wei, WANG Shuao. Layered Metal Organic Framework for Effective Removal of 137Cs from Aqueous Solution[J]. Journal of Inorganic Materials, 2020, 35(3): 367-372.
Fig. 1 Crystal structure of SZ-6 (a) Coordination environment of In3+ center; (b) Asymmetric unit of SZ-6; (c ) Layer packed structure of SZ-6 along the a axis; (d) Rhombic channels viewed along the c axis Atom colors: In = cyan, C = anthracite, N = blue, O =red
Fig. 7 Sorption isotherm curves of Cs+ by SZ-6 (Solid curve: Langmuir equilibrium isotherm model; Dotted curve: Freundlich equilibrium isotherm model)
Langmuir | Freundlich | ||||
---|---|---|---|---|---|
qm/(mg·g-1) | KL/(mg·g-1) | R2 | kF/(mg·g-1) | n | R2 |
140.005 | 0.024 | 0.997 | 20.368 | 3.295 | 0.844 |
Table 1 Fitting parameters of Langmuir model and Freundlich model
Langmuir | Freundlich | ||||
---|---|---|---|---|---|
qm/(mg·g-1) | KL/(mg·g-1) | R2 | kF/(mg·g-1) | n | R2 |
140.005 | 0.024 | 0.997 | 20.368 | 3.295 | 0.844 |
Competing cation | Cs+/Na+ | Cs+ /K+ | Cs+/Ca2+ | |
---|---|---|---|---|
Solid/Liquid /(g•L-1) | 2 | 2 | 5 | |
Cs+ removal/% | MR=1 : 1 | 87.2 | 84.7 | 91.2 |
MR=1 : 10 | 84.2 | 75.7 | 90.1 | |
MR=1 : 20 | 75.8 | 65.5 | 85 | |
MR=1 : 30 | 70.3 | 59 | 73.7 | |
MR=1 : 50 | 63.5 | 49.3 | 65.7 |
Table 2 Effect of Na+, K+, Ca2+ on the removal of Cs+ by SZ-6
Competing cation | Cs+/Na+ | Cs+ /K+ | Cs+/Ca2+ | |
---|---|---|---|---|
Solid/Liquid /(g•L-1) | 2 | 2 | 5 | |
Cs+ removal/% | MR=1 : 1 | 87.2 | 84.7 | 91.2 |
MR=1 : 10 | 84.2 | 75.7 | 90.1 | |
MR=1 : 20 | 75.8 | 65.5 | 85 | |
MR=1 : 30 | 70.3 | 59 | 73.7 | |
MR=1 : 50 | 63.5 | 49.3 | 65.7 |
[1] | QI X H, DU K Z, FENG M L , et al. A two-dimensionally microporous thiostannate with superior Cs + and Sr2+ ion-exchange property. Journal of Materials Chemistry A, 2015,3(10):5665-5673. |
[2] | GAO Y J, FENG M L, ZHANG B , et al. An easily synthesized microporous framework material for the selective capture of radioactive Cs + and Sr2+ ions. Journal of Materials Chemistry A, 2018,6(9):3967-3976. |
[3] | WANG X X, CHEN L, WANG L , et al. Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Science China-Chemistry, 2019,62(8):933-967. |
[4] | LI J, WANG X X, ZHAO G X , et al. Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chemical Society Reviews, 2018,47(7):2322-2356. |
[5] | WANG X X, YU S J, WANG X K . Removal of radionuclides by metal-organic framework-based materials. Journal of Inorganic Materials, 2019,34(1):17-26. |
[6] | VELLINGIRI K, KIM K H, POURNARA A , et al. Towards high-efficiency sorptive capture of radionuclides in solution and gas. Progress in Materials Science,, 2018,94:1-67. |
[7] | LI G D, JI G X, LIU W , et al. A hydrolytically stable anionic layered indium-organic framework for the efficient removal of 90Sr from seawater. Dalton Transactions, 2019,48:17858-17863. |
[8] | MERTZ J L, FARD Z H, MALLIAKAS C D , et al. Selective removal of Cs+, Sr2+, and Ni2+ by K2xMgxSn3-xS6 (x=0.5-1),(KMS-2) relevant to nuclear waste remediation. Chemistry of Materials, 2013,25(10):2116-2127. |
[9] | ALI I M, ZAKARIA E S, ALY H F . Highly effective removal of Na-22, Cs-134 and Co-60 from aqueous solutions by titanosilicate: a radiotracer study. Journal of Radioanalytical and Nuclear Chemistry, 2010,285(3):483-489. |
[10] | PAVEL C C, POPA K, BILBA N , et al. The sorption of some radiocations on microporous titanosilicate ETS-10. Journal of Radioanalytical and Nuclear Chemistry, 2003,258(2):243-248. |
[11] | EL-KAMASH A M . Evaluation of zeolite A for the sorptive removal of Cs + and Sr2(+) ions from aqueous solutions using batch and fixed bed column operations . Journal of Hazardous Materials, 2008,151(2/3):432-445. |
[12] | MANOS M J , Unique pore selectivity for Cs+ and exceptionally high NH4+ exchange capacity of the chalcogenide material K6Sn[Zn4Sn4S17]. Journal of the American Chemical Society, 2006,128(27):8875-8883. |
[13] | POOJARY D M, CAHILL R A, CLEARFIELD A . Synthesis, crystal-structures, and ion-exchange properties of a novel porous titanosilicate. Chemistry of Materials, 1994,6(12):2364-2368. |
[14] | PAVEL C C, POPA K . Investigations on the ion exchange process of Cs+ and Sr2+ cations by ETS materials. Chemical Engineering Journal, 2014,245:288-294. |
[15] | DOBELIN N, ARMBRUSTER T . Microporous titanosilicate AM-2: ion-exchange and thermal stability. Microporous and Mesoporous Materials, 2007,99(3):279-287. |
[16] | DING N, KANATZIDIS M G . Selective incarceration of caesium ions by Venus flytrap action of a flexible framework sulfide. Nature Chemistry, 2010,2(3):187-191. |
[17] | DATTA S J, MOON W K, CHOI D Y , et al. A novel vanadosilicate with hexadeca-coordinated Cs+ ions as a highly effective Cs+ remover. Angewandte Chemie-International Edition, 2014,53(28):7203-7208. |
[18] | MANOS M J, KANATZIDIS M G . Highly efficient and rapid Cs+ uptake by the layered metal sulfide K2xMnxSn3-xS6 (KMS-1). Journal of the American Chemical Society, 2009,131(18):6599-6607. |
[19] | PARK Y, LEE Y C, SHIN W S , et al. Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate-polyacrylonitrile (AMP-PAN). Chemical Engineering Journal, 2010,162(2):685-695. |
[20] | NAEIMI S, FAGHIHIAN H . Performance of novel adsorbent prepared by magnetic metal-organic framework (MOF) modified by potassium nickel hexacyanoferrate for removal of Cs+ from aqueous solution. Separation and Purification Technology, 2017,175:255-265. |
[21] | ZHANG J R, CHEN L H, DAI X , et al. Distinctive two-step intercalation of Sr2+ into a coordination polymer with record high Sr-90 uptake capabilities. Chem., 2019,5(4):977-994. |
[1] | WU Guangyu, SHU Song, ZHANG Hongwei, LI Jianjun. Enhanced Styrene Adsorption by Grafted Lactone-based Activated Carbon [J]. Journal of Inorganic Materials, 2024, 39(4): 390-398. |
[2] | XIE Tian, SONG Erhong. Effect of Elastic Strains on Adsorption Energies of C, H and O on Transition Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(11): 1292-1300. |
[3] | CHAO Shaofei, XUE Yanhui, WU Qiong, WU Fufa, MUHAMMAD Sufyan Javed, ZHANG Wei. Efficient Potassium Storage through Ti-O-H-O Electron Fast Track of MXene Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(11): 1212-1220. |
[4] | MA Xiaosen, ZHANG Lichen, LIU Yanchao, WANG Quanhua, ZHENG Jiajun, LI Ruifeng. 13X@SiO2: Synthesis and Toluene Adsorption [J]. Journal of Inorganic Materials, 2023, 38(5): 537-543. |
[5] | GUO Chunxia, CHEN Weidong, YAN Shufang, ZHAO Xueping, YANG Ao, MA Wen. Adsorption of Arsenate in Water by Zirconia-halloysite Nanotube Material [J]. Journal of Inorganic Materials, 2023, 38(5): 529-536. |
[6] | WANG Shiyi, FENG Aihu, LI Xiaoyan, YU Yun. Pb (II) Adsorption Process of Fe3O4 Supported Ti3C2Tx [J]. Journal of Inorganic Materials, 2023, 38(5): 521-528. |
[7] | YU Yefan, XU Ling, NI Zhongbing, SHI Dongjian, CHEN Mingqing. Prussian Blue Modified Biochar: Preparation and Adsorption of Ammonia Nitrogen from Sewage [J]. Journal of Inorganic Materials, 2023, 38(2): 205-212. |
[8] | LING Jie, ZHOU Anning, WANG Wenzhen, JIA Xinyu, MA Mengdan. Effect of Cu/Mg Ratio on CO2 Adsorption Performance of Cu/Mg-MOF-74 [J]. Journal of Inorganic Materials, 2023, 38(12): 1379-1386. |
[9] | TANG Ya, SUN Shengrui, FAN Jia, YANG Qingfeng, DONG Manjiang, KOU Jiahui, LIU Yangqiao. PEI Modified Hydrated Calcium Silicate Derived from Fly Ash and Its adsorption for Removal of Cu (II) and Catalytic Degradation of Organic Pollutants [J]. Journal of Inorganic Materials, 2023, 38(11): 1281-1291. |
[10] | DAI Jieyan, FENG Aihu, MI Le, YU Yang, CUI Yuanyuan, YU Yun. Adsorption Mechanism of NaY Zeolite Molecular Adsorber Coating on Typical Space Contaminations [J]. Journal of Inorganic Materials, 2023, 38(10): 1237-1244. |
[11] | WANG Hongning, HUANG Li, QING Jiang, MA Tengzhou, HUANG Weiqiu, CHEN Ruoyu. Mesoporous Organic-inorganic Hybrid Siliceous Hollow Spheres: Synthesis and VOCs Adsorption [J]. Journal of Inorganic Materials, 2022, 37(9): 991-1000. |
[12] | SUN Yangshan, YANG Zhihua, CAI Delong, ZHANG Zhengyi, LIU Qi, FANG Shuqing, FENG Liang, SHI Lifen, WANG Youle, JIA Dechang. Crystallization Kinetics, Properties of α-cordierite Based Glass-ceramics Prepared by Glass Powder Sintering [J]. Journal of Inorganic Materials, 2022, 37(12): 1351-1357. |
[13] | LIU Cheng, ZHAO Qian, MOU Zhiwei, LEI Jiehong, DUAN Tao. Adsorption Properties of Novel Bismuth-based SiOCNF Composite Membrane for Radioactive Gaseous Iodine [J]. Journal of Inorganic Materials, 2022, 37(10): 1043-1050. |
[14] | ZHOU Fan, BI Hui, HUANG Fuqiang. Ultra-large Specific Surface Area Activated Carbon Synthesized from Rice Husk with High Adsorption Capacity for Methylene Blue [J]. Journal of Inorganic Materials, 2021, 36(8): 893-903. |
[15] | YU Xiangkun, LIU Kun, LI Zhipeng, ZHAO Yulu, SHEN Jinyou, MAO Ping, SUN Aiwu, JIANG Jinlong. Efficient Adsorption of Radioactive Iodide by Copper/Palygorskite Composite [J]. Journal of Inorganic Materials, 2021, 36(8): 856-864. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||