Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (4): 439-446.DOI: 10.15541/jim20190260
Special Issue: 功能陶瓷论文精选(一):发光材料
Previous Articles Next Articles
CHEN Ting1,2,XU Yanqiao1,JIANG Weihui1,2,XIE Zhixiang1,WANG Lianjun2,3,JIANG Wan2,3
Received:
2019-05-30
Revised:
2019-06-28
Published:
2020-04-20
Online:
2019-09-04
Supported by:
CLC Number:
CHEN Ting, XU Yanqiao, JIANG Weihui, XIE Zhixiang, WANG Lianjun, JIANG Wan. Ionic Liquid Assisted Microwave Synthesis of Cu-In-Zn-S/ZnS Quantum Dots and Their Application in White LED[J]. Journal of Inorganic Materials, 2020, 35(4): 439-446.
Fig. 2 (a) PL spectra and (b) evolution of the emission intensity and peak position of CIZS QDs prepared with different reaction time (without ionic liquid, nGSH/n(CuInZn)=15, pH=8.5)
Fig. 3 (a) PL spectra and (b) evolution of the emission intensity and peak position of CIZS QDs prepared with different reaction time (with ionic liquid, nGSH/n(CuInZn)=15, pH=8.5)
Fig. 6 (a) PL spectra and (b) evolution of the emission intensity and peak position of CIZS QDs with different nGSH/n(CuInZn) ratios (with ionic liquid for 30 min, pH=8.5)
Fig. 8 (a) PL spectra and (b) evolution of the emission intensity and peak position of CIZS QDs prepared with different pH (with ionic liquid for 30 min, nGSH/n(CuInZn)=15)
[1] | YE S, XIAO F, PAN Y X , et al. Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties. Mater. Sci. Eng. R, 2010,71(1):1-34. |
[2] | HOERDER G J, SEIBALD M, BAUMANN D , et al. Sr[Li2Al2O2N2]:Eu2+- a high performance red phosphor to brighten the future. Nat. Commun., 2019,10:1824. |
[3] | WANG L, XIE R J, SUEHIRO T , et al. Down-conversion nitride materials for solid state lighting: recent advances and perspectives. Chem. Rev., 2018,118(4):1951-2009. |
[4] | PIETRYGA J M, PARK Y S, LIM J , et al. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev., 2016,116(18):10513-10622. |
[5] | DAICHO H, IWASAKI T, ENOMOTO K , et al. A novel phosphor for glareless white light-emitting diodes. Nat. Commun., 2012,3:1132. |
[6] | GUPTA K V K, MULEY A, YADAV P , et al. Combustion synthesis of YAG:Ce and related phosphors. Appl. Phys. B, 2011,105(2):479-484. |
[7] | KANG X, YANG Y, WANG L , et al. Warm white light emitting diodes with gelatin-coated AgInS2/ZnS core/shell quantum dots. ACS Appl. Mater. Interfaces, 2015,7(50):27713-27719. |
[8] | CHUANG P H, LIN C C, LIU R S . Emission-tunable CuInS2/ZnS quantum dots: structure, optical properties, and application in white light-emitting diodes with high color rendering index. ACS Appl. Mater. Interfaces, 2014,6(17):15379-15387. |
[9] | ILAIYARAJA P, MOCHERLA P S V, SRINIVASAN T K , et al. Synthesis of Cu-deficient and Zn-graded Cu-In-Zn-S quantum dots and hybrid inorganic-organic nanophosphor composite for white light emission. ACS Appl. Mater. Interfaces, 2016,8(19):12456-12465. |
[10] | JO D Y, YANG H . Spectral broadening of Cu-In-Zn-S quantum dot color converters for high color rendering white lighting device. J. Lumin., 2015,166:227-232. |
[11] | GUGULA K, STEGEMANN L, CYWINSKI P J , et al. Facile surface engineering of CuInS2/ZnS quantum dots for LED down- converters. RSC Adv., 2016,6(12):10086-10093. |
[12] | CHEN J, LI Y, WANG L , et al. Achieving deep-red-to-near- infrared emissions in Sn-doped Cu-In-S/ZnS quantum dots for red-enhanced white LEDs and near-infrared LEDs. Nanoscale, 2018,10(20):9788-9795. |
[13] | CHEN F, YAO Y, LIN H , et al. Synthesis of CuInZnS quantum dots for cell labelling applications. Ceram. Int., 2018,44(Suppl.1):S34-S37. |
[14] | CHEN B, ZHONG H, WANG M , et al. Integration of CuInS2- based nanocrystals for high efficiency and high colour rendering white light-emitting diodes. Nanoscale, 2013,5(8):3514-3519. |
[15] | XIE R, RUTHERFORD M, PENG X . Formation of high-quality I-III-VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors. J. Am. Chem. Soc., 2009,131(15):5691-5697. |
[16] | ZHANG W, LOU Q, JI W , et al. Color-tunable highly bright photoluminescence of cadmium-free Cu-doped Zn-In-S nanocrystals and electroluminescence. Chem. Mater., 2014,26(2):1204-1212. |
[17] | KIM J H, YANG H . High-efficiency Cu-In-S quantum-dot- light-emitting device exceeding 7%. Chem. Mater., 2016,28(17):6329-6335. |
[18] | WU R, WANG T, WU M , et al. Synthesis of highly stable CuInZnS/ ZnS//ZnS quantum dots with thick shell and its application to quantitative immunoassay. Chem. Eng. J., 2018,348:447-454. |
[19] | CHEN X, CHEN S, XIA T , et al. Aqueous synthesis of high quality multicolor Cu-Zn-In-S quantum dots. J. Lumin., 2017,188:162-167. |
[20] | LIU Y, CHEN X, MA Q . An efficient microwave-assisted hydrothermal synthesis of high-quality CuInZnS/ZnS quantum dots. New J. Chem., 2018,42(6):4102-4108. |
[21] | JIANG T, SONG J, WANG H , et al. Aqueous synthesis of color tunable Cu doped Zn-In-S/ZnS nanoparticles in the whole visible region for cellular imaging. J. Mater. Chem. B, 2015,3(11):2402-2410. |
[22] | XU Y, CHEN T, HU X , et al. The off-stoichiometry effect on the optical properties of water-soluble copper indium zinc sulfide quantum dots. J. Colloid Interf. Sci., 2017,496:479-486. |
[23] | 陈婷, 徐彦乔, 王连军 . 一种离子液体辅助微波法合成I-III-VI族多元量子点的制备方法及其制得的产品. 中国, CN201610920307. 2. 2018.08.03. |
[24] | ZHANG J, XIE R, YANG W . A simple route for highly luminescent quaternary Cu-Zn-In-S nanocrystal emitters. Chem. Mater., 2011,23(14):3357-3361. |
[25] | CHENG J, LI D, CHENG T , et al. Aqueous synthesis of high- fluorescence CdZnTe alloyed quantum dots. J. Alloys. Compd., 2014,589:539-544. |
[26] | ZHANG J, SUN W, YIN L , et al. One-pot synthesis of hydrophilic CuInS2 and CuInS2-ZnS colloidal quantum dots. J. Mater. Chem. C, 2014,2(24):4812-4817. |
[27] | YU Y, XU L, CHEN J , et al. Hydrothermal synthesis of GSH- TGA co-capped CdTe quantum dots and their application in labeling colorectal cancer cells. Colloid. Surface B, 2012,95:247-253. |
[28] | CHEN Y, LI W, WANG J , et al. Microwave-assisted ionic liquid synthesis of Ti3+ self-doped TiO2 hollow nanocrystals with enhanced visible-light photoactivity. Appl. Catal. B, 2016,191:94-105. |
[29] | ZHU Y J, CHEN F . Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem. Rev., 2014,114(12):6462-6555. |
[30] | VEMPATI S, ERTAS Y, UYAR T . Sensitive surface states and their passivation mechanism in CdS quantum dots. J. Phys. Chem. C, 2013,117(41):21609-21618. |
[31] | LENG Z, HUANG L, SHAO F , et al. Facile synthesis of Cu-In-Zn-S alloyed nanocrystals with temperature-dependent photoluminescence spectra. Mater. Lett., 2014,119:100-103. |
[32] | DING Y, SHEN S Z, SUN H , et al. Synthesis of L-glutathione- capped-ZnSe quantum dots for the sensitive and selective determination of copper ion in aqueous. Sensor. Actuat. B, 2014,203:35-43. |
[33] | WANG Y, LIANG X, MA X , et al. Simple and greener synthesis of highly photoluminescence Mn2+-doped ZnS quantum dots and its surface passivation mechanism. Appl. Surf. Sci., 2014,316:54-61. |
[34] | LUO Z, ZHANG H, HUANG J , et al. One-step synthesis of water- soluble AgInS2 and ZnS-AgInS2 composite nanocrystals and their photocatalytic activities. J. Colloid Interf. Sci., 2012,377(1):27-33. |
[35] | ZHANG J, LI J, ZHANG J , et al. Aqueous synthesis of ZnSe nanocrystals by using glutathione as ligand: the pH-mediated coordination of Zn2+ with glutathione. J. Phys. Chem. C, 2010,114(25):11087-11091. |
[36] | REGULACIO M D, WIN K Y, LO S L , et al. Aqueous synthesis of highly luminescent AgInS2-ZnS quantum dots and their biological applications. Nanoscale, 2013,5(6):2322-2327. |
[37] | KO M, YOON H C, YOO H , et al. Highly efficient green Zn-Ag- In-S/Zn-In-S/ZnS QDs by a strong exothermic reaction for down- converted green and tripackage white LEDs. Adv. Funct. Mater., 2017,27(4):1602638. |
[38] | LIU Z, TANG A, WANG M , et al. Heating-up synthesis of cadimum-free and color-tunable quaternary and five-component Cu-In-Zn-S-based semiconductor nanocrystals. J. Mater. Chem. C, 2015,3(39):10114-10120. |
[1] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[2] | LI Wenyuan, XU Jianan, DENG Han'ao, CHANG Aimin, ZHANG Bo. Effect of V5+ Substitution on Microstructure and Microwave Dielectric Properties of LaTaO4 Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 697-703. |
[3] | HE Guoqiang, ZHANG Kaiheng, WANG Zhentao, BAO Jian, XI Zhaochen, FANG Zhen, WANG Changhao, WANG Wei, WANG Xin, JIANG Jiapei, LI Xiangkun, ZHOU Di. Ba(Nd1/2Nb1/2)O3: Au Underrated K40 Microwave Dielectric Ceramic [J]. Journal of Inorganic Materials, 2025, 40(6): 639-646. |
[4] | TANG Ying, LI Jie, XIANG Huaicheng, FANG Weishuang, LIN Huixing, YANG Junfeng, FANG Liang. Rattling Effect: A New Mechanism Affecting the Resonant Frequency Temperature Coefficient of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 656-666. |
[5] | YANG Yan, ZHANG Faqiang, MA Mingsheng, WANG Yongzhe, OUYANG Qi, LIU Zhifu. Low Temperature Sintering of ZnAl2O4 Ceramics with CuO-TiO2-Nb2O5 Composite Oxide Sintering Aid [J]. Journal of Inorganic Materials, 2025, 40(6): 711-718. |
[6] | YIN Changzhi, CHENG Mingfei, LEI Weicheng, CAI Yiyang, SONG Xiaoqiang, FU Ming, LÜ Wenzhong, LEI Wen. Effect of Ga3+ Doping on Crystal Structure Evolution and Microwave Dielectric Properties of SrAl2Si2O8 Ceramic [J]. Journal of Inorganic Materials, 2025, 40(6): 704-710. |
[7] | XIONG Siyu, MO Chen, ZHU Xiaowei, ZHU Guobin, CHEN Deqin, LIU Laijun, SHI Xiaodong, LI Chunchun. Low-temperature Sintering of LiBxAl1-xSi2O6 Microwave Dielectric Ceramics with Ultra-low Permittivity [J]. Journal of Inorganic Materials, 2025, 40(5): 536-544. |
[8] | XIN Zhenyu, GUO Ruihua, WUREN Tuoya, WANG Yan, AN Shengli, ZHANG Guofang, GUAN Lili. Pt-Fe/GO Nanocatalysts: Preparation and Electrocatalytic Performance on Ethanol Oxidation [J]. Journal of Inorganic Materials, 2025, 40(4): 379-387. |
[9] | LIU Wenlong, ZHAO Jin, LIU Juan, MAO Xiaojian, ZHANG Jian, WANG Shiwei. Microwave Drying of Spontaneous-Coagulation-Cast Wet Alumina Green Body [J]. Journal of Inorganic Materials, 2023, 38(4): 461-468. |
[10] | CHEN Yongqiang, WANG Yixue, ZHANG Fan, LI Hongxia, DONG Binbin, MIN Zhiyu, ZHANG Rui. Preparation of Special Ceramics by Microwave Heating: a Review [J]. Journal of Inorganic Materials, 2022, 37(8): 841-852. |
[11] | ZHANG Xiaoyu, LIU Yongsheng, LI Ran, LI Yaogang, ZHANG Qinghong, HOU Chengyi, LI Kerui, WANG Hongzhi. Cu3(HHTP)2 Film-based Ionic-liquid Electrochromic Electrode [J]. Journal of Inorganic Materials, 2022, 37(8): 883-890. |
[12] | YAO Xiaogang, PENG Haiyi, GU Zhongyuan, HE Fei, ZHAO Xiangyu, LIN Huixing. Polyphenylene Oxide/Ca0.7La0.2TiO3 Microwave Composite Substrate [J]. Journal of Inorganic Materials, 2022, 37(5): 493-498. |
[13] | CAO Zhijun, LI Zaijun. Ruthenium-biocarbon Mimic Enzyme: Synthesis and Application in Colorimetric Detection of Pesticide Chlorpyrifos [J]. Journal of Inorganic Materials, 2022, 37(5): 554-560. |
[14] | FU Yukun, ZENG Min, RAO Xianfa, ZHONG Shengwen, ZHANG Huijuan, YAO Wenli. Microwave-assisted Synthesis and Co, Al Co-modification of Ni-rich LiNi0.8Mn0.2O2 Materials for Li-ion Battery Electrode [J]. Journal of Inorganic Materials, 2021, 36(7): 718-724. |
[15] | WU Zhihong, DENG Yue, MENG Zhenzhen, ZHANG Guoli, ZHANG Luping, WANG Yubin. Microwave Absorbing Properties of Novel SiC/Cf Composites Containing SiC Array Modified Coating [J]. Journal of Inorganic Materials, 2021, 36(3): 306-312. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||