Journal of Inorganic Materials ›› 2016, Vol. 31 ›› Issue (12): 1363-1369.DOI: 10.15541/jim20160079
• Orginal Article • Previous Articles Next Articles
ABDUKAYUM Abdukader, TUERDI Ailijiang, ABDURAHMAN Renagul, TURSUN Mamutjan, NURMAT Nurbiya
Received:
2016-02-01
Revised:
2016-05-06
Published:
2016-12-16
Online:
2016-11-23
CLC Number:
ABDUKAYUM Abdukader, TUERDI Ailijiang, ABDURAHMAN Renagul, TURSUN Mamutjan, NURMAT Nurbiya. Synthesis and Luminescence Properties of Dy,Cr Co-doped ZnGa2O4 Persistent Luminescence Nanoparticles[J]. Journal of Inorganic Materials, 2016, 31(12): 1363-1369.
Fig. 4 TEM images of ZnGa2O4: Cr3+ (a-c) prepared in solution with different pH and (d-e) co-doped with different amounts of Dy3+, (h) nanoparticles size distribution of 1% Dy3+ co-doped ZnGa2O4: Cr3+ ^(a) pH = 11, (b) pH = 9 and (c) pH = 11 with n(Ga):n(Zn)=2:1, cDy=0; (d) 0.8 % Dy3+ , (e) 1.0% Dy3+ , (f) 1.2% Dy3+ and (g) 1.5% Dy3+ with n(Ga):n(Zn)=2:1.2, pH=7
Fig. 5 XRD patterns of ZnGa2O4: Cr3+ (a-c) prepared in solution with different pH (d-g) and co-doped with different amounts of Dy3+^(a) pH = 11, (b) pH = 9 and (c) pH = 11 with n(Ga):n(Zn)=2:1, cDy=0; (d) 0.8 % Dy3+ , (e) 1.0% Dy3+ , (f) 1.2% Dy3+ and (g) 1.5% Dy3+ with n(Ga):n(Zn)=2:1.2, pH=7
Fig. 6 Afterglow decay curve of ZnGa2O4: Cr3+ (a) prepared in solution with different pH and (b) co-doped with different amounts of Dy3+^(a) n(Ga):n(Zn)=2:1, cDy=0; (b) n(Ga):n(Zn)=2:1.2, pH=7
τ1 /s | A1 | τ2/s | A2 | τ3 /s | A3 |
---|---|---|---|---|---|
6.56±0.02 | 41280.54 | 70.82±0.95 | 910.07 | 292.61±6.73 | 208.62 |
Table 1 The parameters of NIR afterglow decay curve fitting
τ1 /s | A1 | τ2/s | A2 | τ3 /s | A3 |
---|---|---|---|---|---|
6.56±0.02 | 41280.54 | 70.82±0.95 | 910.07 | 292.61±6.73 | 208.62 |
Fig. 7 (a) Persistent luminescence spectra of the ZnGa2O4:Cr3+, Dy3+ at 1, 2, 3, 5, 10, 20, 30, 40, 50, and 60 min after stopping excitation; (b) NIR afterglow decay curve of the ZnGa2O4:Cr3+, Dy3+; (c) NIR afterglow images of the ZnGa2O4:Cr3+, Dy3+ at different times; (d) NIR persistent luminescence mechanism in the ZnGa2O4:Cr3+, Dy3+^n(Ga):n(Zn)=2:1, pH=7, cDy =1%
[1] | BRITO H F, HÖLSÄ J, LAAMANEN T,et al. Persistent luminescence mechanisms: human imagination at work. Opt. Mater. Express, 2012, 2(4): 371-381. |
[2] | LASTUSAARI M, LAAMANEN T,MALKAMÄKI M,et al. The Bologna Stone: history's first persistent luminescent material. Eur. J. Mineral., 2012, 24(5): 885-890. |
[3] | VAN DEN EECKHOUT K, POELMAN D, SMET P F. Persistent luminescence in non-Eu2+-doped compounds: a review.Materials, 2013, 6(7): 2789-2818. |
[4] | VAN DEN EECKHOUT K, SMET P F, POELMAN D. Persistent luminescence in Eu2+-doped compounds: a review.Materials, 2010, 3(4): 2536-2566. |
[5] | LE MASNE DE CHERMONT Q, CHANEAC C, SEGUIN J,et al. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl. Acad. Sci. USA, 2007, 104(22): 9266-9271. |
[6] | HUANG P, TU D, ZHENG W,et al. Inorganic lanthanide nanoprobes for background-free luminescent bioassays. Science China Materials, 2015, 58(2): 156-177. |
[7] | BÜNZIL J C G, ELISEEVA S V. Intriguing aspects of lanthanide luminescence.Chem. Sci., 2013, 4(5): 1939-1949. |
[8] | YAO C, TONG Y.Lanthanide ion-based luminescent nanomaterials for bioimaging.Trac-Trends Anal. Chem., 2012, 39: 60-71. |
[9] | BESSIERE A, JACQUART S, PRIOLKAR,et al.ZnGa2O4:Cr3+: a new red long-lasting phosphor with high brightness. Opt. Express, 2011, 19(11): 10131-10137. |
[10] | GU Z, LIU F, LI X,et al. Red, green, and blue luminescence from ZnGa2O4 nanowire arrays. J. Phys. Chem. Lett., 2010, 1(1): 354-357. |
[11] | DHAK P, GAYEN U K, MISHRA S,et al.Optical emission spectra of chromium doped nanocrystalline zinc gallate. J. Appl. Phys., 2009, 106(6): 063721. |
[12] | WEISSLEDER R.A clearer vision forin vivo imaging. Nat. Biotechnol .,2001, 19(4): 316-317. |
[13] | SHI W, SONG S, ZHANG H.Hydrothermal synthetic strategies of inorganic semiconducting nanostructures.Chem. Soc. Rev., 2013, 42(13): 5714-5743. |
[14] | MALDINEY T, BESSIÈRE A, SEGUIN J,et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater., 2014, 13(4): 418-426. |
[15] | SRIVASTAVA B B, KUANG A, MAO Y.Persistent luminescent sub-10 nm Cr doped ZnGa2O4 nanoparticles by a biphasic synthesis route.Chem. Commun., 2015, 51(34): 7372-7375. |
[16] | LI Z, ZHANG Y, WU X,et al. Direct aqueous-phase synthesis of Sub-10 nm "Luminous Pearls" with enhanced in vivo renewable near-infrared persistent luminescence. J. Am. Chem. Soc., 2015, 137(16): 5304-5307. |
[17] | TESTON E, RICHARD S, MALDINEY T,et al. Non-aqueous sol-gel synthesis of ultra small persistent luminescence nanoparticles for near-infrared in vivo imaging. Chem. Eur. J., 2015, 21(20): 7350-7354. |
[18] | LIU F, YAN W, CHUANG Y J,et al. Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8. Sci. Rep., 2013, 3: 1554. |
[19] | MALDINEY T, LECOINTRE A I, VIANA B,et al. Controlling electron trap depth to enhance optical properties of persistent lumi nescence nanoparticles for In vivo imaging. J. Am. Chem. Soc., 2011, 133(30): 11810-11815. |
[20] | ALLIX M, CHENU S, VÉRON E,et al. Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4. Chem. Mater., 2013, 25(9): 1600-1606. |
[21] | AITASALO T, DEREŃ P, HÖLSÄ J,et al. Persistent luminescence phenomena in materials doped with rare earth ions . J. Solid State Chem., 2003, 171(1): 114-122. |
[22] | PAN Z, LU Y Y, LIU F.Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates.Nat. Mater., 2012, 11(1): 58-63. |
[23] | ABDUKAYUM A, CHEN J T, ZHAO Q,et al. Functional near infrared-emitting Cr3+/Pr3+ Co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging . J. Am. Chem. Soc., 2013, 135(38): 14125-14133. |
[24] | MALDINEY T, RICHARD C, SEGUIN J,et al. Effect of core diameter, surface coating, and PEG chain length on the Biodistribution of Persistent Luminescence Nanoparticles in Mice . ACS Nano, 2011, 5(2): 854-862. |
[25] | ABDUKAYUM A, YANG C X, ZHAO Q,et al. Gadolinium complexes functionalized persistent luminescent nanoparticles as a multimodal probe for near-infrared luminescence and magnetic resonance imaging in vivo . Anal. Chem., 2014, 86(9): 4096-4101. |
[26] | LI X, ZHANG F, ZHAO D.Highly efficient lanthanide upconverting nanomaterials: progresses and challenges.Nano Today, 2013, 8(6): 643-676. |
[27] | DONG H, SUN L D, YAN C H. Basic understanding of the lanthanide related upconversion emissions.Nanoscale, 2013, 5(13): 5703-5714. |
[28] | KIM J S, PARK H L, KIM G C,et al. Luminescence enhancement of ZnGa2O4 : Mn2+ by Ge4+ and Li+ doping . Solid State Commun., 2003, 126(9): 515-518. |
[1] | LI Yuejun, CAO Tieping, SUN Dawei. Bi4O5Br2/CeO2 Composite with S-scheme Heterojunction: Construction and CO2 Reduction Performance [J]. Journal of Inorganic Materials, 2023, 38(8): 963-970. |
[2] | NIU Haibin, HUANG Jiahui, LI Qianwen, MA Dongyun, WANG Jinmin. Directly Hydrothermal Growth and Electrochromic Properties of Porous NiMoO4 Nanosheet Films [J]. Journal of Inorganic Materials, 2023, 38(12): 1427-1433. |
[3] | YAO Yishuai, GUO Ruihua, AN Shengli, ZHANG Jieyu, CHOU Kuochih, ZHANG Guofang, HUANG Yarong, PAN Gaofei. In-situ Loaded Pt-Co High Index Facets Catalysts: Preparation and Electrocatalytic Performance [J]. Journal of Inorganic Materials, 2023, 38(1): 71-78. |
[4] | ZHANG Xian, ZHANG Ce, JIANG Wenjun, FENG Deqiang, YAO Wei. Synthesis, Electronic Structure and Visible Light Photocatalytic Performance of Quaternary BiMnVO5 [J]. Journal of Inorganic Materials, 2022, 37(1): 58-64. |
[5] | XIAO Yumin, Li Bin, QIN Lizhao, LIN Hua, LI Qing, LIAO Bin. Efficient Preparation of CuGeO3 with Controllable Morphology Using CuCl2 as Copper Source [J]. Journal of Inorganic Materials, 2021, 36(1): 69-74. |
[6] | WANG Juhan,WEN Xiong,LIU Chengchao,ZHANG Yuhua,ZHAO Yanxi,LI Jinlin. Preparation and Fischer-Tropsch Synthesis Performance of Hierarchical Co/Al-SiO2 Catalyst [J]. Journal of Inorganic Materials, 2020, 35(9): 999-1004. |
[7] | XU Yun-Qing,WANG Hai-Zeng. Sodium Magnesium Fluoride Particles of Different Morphologies: Prepared by EDTA-assisted Hydrothermal Method [J]. Journal of Inorganic Materials, 2019, 34(9): 933-937. |
[8] | GOU Sheng-Lian, NAI Xue-Ying, XIAO Jian-Fei, YE Jun-Wei, DONG Ya-Ping, LI Wu. Preparation and Thermal Decomposition of Basic Magnesium Chloride Whiskers [J]. Journal of Inorganic Materials, 2019, 34(7): 781-785. |
[9] | Wei LIU, Kai ZHENG, Dong-Hong WANG, Yi-San LEI, Huai-Lin FAN. Co3O4 Nanowire Arrays@Activated Carbon Fiber Composite Materials: Facile Hydrothermal Synthesis and Its Electrochemical Application [J]. Journal of Inorganic Materials, 2019, 34(5): 487-492. |
[10] | WANG Wei, LUO Shi-Jie, XIAN Cong, XIAO Qun, YANG Yang, OU Yun, LIU Yun-Ya, XIE Shu-Hong. Enhanced Thermoelectric Properties of Hydrothermal Synthesized BiCl3/Bi2S3 Composites [J]. Journal of Inorganic Materials, 2019, 34(3): 328-334. |
[11] | JIANG Hai-Yan, XIA Yun-Sheng, LI Yu-Zhen. Preparation and Visible-light-driven Photocatalytic Performance of Porous Rod-like FeVO4 [J]. Journal of Inorganic Materials, 2018, 33(9): 949-955. |
[12] | ZENG Yan-Fei, XIN Guo-Xiang, BULIN Chao-Ke, ZHANG Bang-Wen. One-step Preparation and Electrochemical Performance of 3D Reduced Graphene Oxide/NiO as Supercapacitor Electrodes Materials [J]. Journal of Inorganic Materials, 2018, 33(10): 1070-1076. |
[13] | LI Guo-Chang, WANG Ping, LIU Chang-Bo. Hydrothermal Synthesis of Whitlockite [J]. Journal of Inorganic Materials, 2017, 32(11): 1128-1132. |
[14] | MA Fang, CUI Ming-Fang, ZHU Jian-Hua, LI Ya-Li. Porous Hydroxyapatite Microspheres Prepared by Using Poly (Allylamine Hydrochloride) and Its Application in Drug Delivery [J]. Journal of Inorganic Materials, 2017, 32(11): 1215-1222. |
[15] | RAN Hui-Li, HUANG Hao, MA Meng-Jun, ZHAI Jin-Sheng, FAN Jia-Jie. Dye-sensitized Solar Cells Based on Double-layer Composite Film with Enhanced Photovoltaic Performance [J]. Journal of Inorganic Materials, 2017, 32(10): 1049-1054. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||