Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (1): 58-64.DOI: 10.15541/jim20210263
• RESEARCH ARTICLE • Previous Articles Next Articles
ZHANG Xian(), ZHANG Ce, JIANG Wenjun, FENG Deqiang, YAO Wei()
Received:
2021-04-21
Revised:
2021-07-02
Published:
2022-01-20
Online:
2021-07-12
Contact:
YAO Wei, professor. E-mail: yaowei@qxslab.cn
About author:
ZHANG Xian(1989-), male, PhD, senior engineer. E-mail: zhangxian@qxslab.cn
Supported by:
CLC Number:
ZHANG Xian, ZHANG Ce, JIANG Wenjun, FENG Deqiang, YAO Wei. Synthesis, Electronic Structure and Visible Light Photocatalytic Performance of Quaternary BiMnVO5[J]. Journal of Inorganic Materials, 2022, 37(1): 58-64.
Fig. 8 (a) Curves of MB concentration vs time under different catalytic conditions, and (b) curves of MB concentration vs time with different scavengers
Fig. 9 (a) Repeated test for visible light degradation of MB for BMVO-H sample, (b) SEM image of BMVO-H sample after 5 cycles, and (c) XRD patterns of BMVO-H sample before and after 5 cycles
[1] |
ZHAO C, CHEN Z, SHI R, et al. Recent advances in conjugated polymers for visible-light-driven water splitting. Advanced Materials, 2020, 32(28):1907296.
DOI URL |
[2] |
KIM T W, CHOI K S. Nanoporous BiVO4 photoanodes with dual- layer oxygen evolution catalysts for solar water splitting. Science, 2014, 343(6174):990-994.
DOI URL |
[3] |
YUAN D, SUN M, TANG S, et al. All-solid-state BiVO4/ZnIn2S4 Z-scheme composite with efficient charge separations for improved visible light photocatalytic organics degradation. Chinese Chemical Letters, 2020, 31(2):547-550.
DOI URL |
[4] |
CHEN Q, CHENG X, LONG H, et al. A short review on recent progress of Bi/semiconductor photocatalysts: the role of Bi metal. Chinese Chemical Letters, 2020, 31(10):2583-2590.
DOI URL |
[5] |
TOKUNAGA S, KATO H, KUDO A. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chemistry of Materials, 2001, 13(12):4624-4628.
DOI URL |
[6] |
ZHOU B, ZHAO X, LIU H, et al. Visible-light sensitive cobalt- doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions. Applied Catalysis B: Environmental, 2010, 99(1):214-221.
DOI URL |
[7] |
HE B, LI Z, ZHAO D, et al. Fabrication of porous Cu-doped BiVO4 nanotubes as efficient oxygen-evolving photocatalysts. ACS Applied Nano Materials, 2018, 1(6):2589-2599.
DOI URL |
[8] |
REGMI C, KSHETRI Y.K, KIM T H. et al. Visible-light-induced Fe-doped BiVO4 photocatalyst for contaminated water treatment. Molecular Catalysis, 2017, 432:220-231.
DOI URL |
[9] |
REGMI C, KSHETRI Y K, KIM T H, et al. Fabrication of Ni-doped BiVO4 semiconductors with enhanced visible-light photocatalytic performances for wastewater treatment. Applied Surface Science, 2017, 413:253-265.
DOI URL |
[10] |
LUO W, LI Z, YU T, et al. Effects of surface electrochemical pretreatment on the photoelectrochemical performance of Mo- doped BiVO4. The Journal of Physical Chemistry C, 2012, 116(8):5076-5081.
DOI URL |
[11] | LUO W, YANG Z, LI Z, et al. Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energy & Environmental Science, 2011, 4(10):4046-4051. |
[12] |
ZHONG D K, CHOI S, GAMELIN D R. Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W:BiVO4. Journal of the American Chemical Society, 2011, 133(45):18370-18377.
DOI URL |
[13] |
ZHONG X, HE H, YANG M, et al. In3+-doped BiVO4 photoanodes with passivated surface states for photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2018, 6(22):10456-10465.
DOI URL |
[14] |
USAI S, OBREGÓN S, BECERRO A I, et al. Monoclinic-tetragonal heterostructured BiVO4 by yttrium doping with improved photocatalytic activity. The Journal of Physical Chemistry C, 2013, 117(46):24479-24484.
DOI URL |
[15] |
GOVINDARAJU G V, MORBEC J M, GALLI G A, et al. Experimental and computational investigation of lanthanide ion doping on BiVO4 photoanodes for solar water splitting. The Journal of Physical Chemistry C, 2018, 122(34):19416-19424.
DOI URL |
[16] |
LUO Y, TAN G, DONG G, et al. Structural transformation of Sm3+ doped BiVO4 with high photocatalytic activity under simulated sun-light. Applied Surface Science, 2015, 324:505-511.
DOI URL |
[17] |
BAEK J H, GILL T M, ABROSHAN H, et al. Selective and efficient Gd-Doped BiVO4 photoanode for two-electron water oxidation to H2O2. ACS Energy Letters, 2019, 4(3):720-728.
DOI URL |
[18] |
RADOSAVLJEVIC I, HOWARD J A K, SLEIGHT A W. Synthesis and structure of two new bismuth cadmium vanadates, BiCdVO5 and BiCd2VO6, and structures of BiCa2AsO6 and BiMg2PO6. International Journal of Inorganic Materials, 2000, 2(6):543-550.
DOI URL |
[19] |
XUN X, YOKOCHI A, SLEIGHT A W. Synthesis and structure of BiMnVO5 and BiMnAsO5. Journal of Solid State Chemistry, 2002, 168(1):224-228.
DOI URL |
[20] |
ELIZIARIO NUNES S, WANG C H, SO K, et al. Bismuth zinc vanadate, BiZn2VO6: new crystal structure type and electronic structure. Journal of Solid State Chemistry, 2015, 222:12-17.
DOI URL |
[21] |
RADOSAVLJEVIC I, EVANS J S O, SLEIGHT A W. Synthesis and structure of bismuth copper vanadate, BiCu2VO6. Journal of Solid State Chemistry, 1998, 141(1):149-154.
DOI URL |
[22] |
HUANG J, SLEIGHT A W. Synthesis, crystal structure, and optical properties of a new bismuth magnesium vanadate: BiMg2VO6. Journal of Solid State Chemistry, 1992, 100(1):170-178.
DOI URL |
[23] |
RADOSAVLJEVIC I, EVANS J S O, SLEIGHT A W. Synthesis and structure of BiCa2VO6. Journal of Solid State Chemistry, 1998, 137(1):143-147.
DOI URL |
[24] |
BHIM A, SASMAL S, GOPALAKRISHNAN J, et al. Visible- light-activated C-C bond cleavage and aerobic oxidation of benzyl alcohols employing BiMXO5 (M=Mg, Cd, Ni, Co, Pb, Ca and X=V, P). Chemistry - An Asian Journal, 2020, 15(19):3104-3115.
DOI URL |
[25] |
LIU H, NAKAMURA R, NAKATO Y. Bismuth-copper vanadate BiCu2VO6 as a novel photocatalyst for efficient visible-light-driven oxygen evolution. ChemPhysChem, 2005, 6(12):2499-2502.
DOI URL |
[26] |
VAN ELP J, POTZE R H, ESKES H, et al. Electronic structure of MnO. Physical Review B, 1991, 44(4):1530-1537.
DOI URL |
[27] |
MASSIDDA S, CONTINENZA A, POSTERNAK M, et al. Band- structure picture for MnO reexplored: a model GW calculation. Physical Review Letters, 1995, 74(12):2323-2326.
DOI URL |
[28] |
COOPER J K, GUL S, TOMA F M, et al. Electronic structure of monoclinic BiVO4. Chemistry of Materials, 2014, 26(18):5365-5373.
DOI URL |
[29] | BLAHA P, SCHWARZ K, MADSEN G K H, et al. WIEN2k, an augmented plane wave+ local orbitals program for calculating crystal properties. 2001. |
[30] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18):3865-3868.
DOI URL |
[31] |
BLÖCHL P E. Projector augmented-wave method. Physical Review B, 1994, 50(24):17953-17979.
DOI URL |
[32] |
KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 1999, 59(3):1758-1775.
DOI URL |
[33] |
JIANG Z, LIU Y, JING T, et al. Enhancing the photocatalytic activity of BiVO4 for oxygen evolution by Ce doping: Ce3+ ions as hole traps. The Journal of Physical Chemistry C, 2016, 120(4):2058-2063.
DOI URL |
[34] |
PALANISELVAM T, SHI L, METTELA G, et al. Vastly enhanced BiVO4 photocatalytic OER performance by NiCoO2 as cocatalyst. Advanced Materials Interfaces, 2017, 4(19):1700540.
DOI URL |
[35] |
YAO X, ZHAO X, HU J, et al. The self-passivation mechanism in degradation of BiVO4 photoanode. iScience, 2019, 19:976-985.
DOI URL |
[36] |
BIESINGER M C, PAYNE B P, GROSVENOR A P, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 2011, 257(7):2717-2730.
DOI URL |
[37] |
LI M, LEI W, YU Y, et al. High-performance asymmetric supercapacitors based on monodisperse MnO nanocrystals with high energy densities. Nanoscale, 2018, 10(34):15926-15931.
DOI URL |
[38] | KORTÜM G, BRAUN W, HERZOG G. Principles and techniques of diffuse-reflectance spectroscopy. Angewandte Chemie International Edition, 1963, 2(7):333-341. |
[1] | WU Lin, HU Minglei, WANG Liping, HUANG Shaomeng, ZHOU Xiangyuan. Preparation of TiHAP@g-C3N4 Heterojunction and Photocatalytic Degradation of Methyl Orange [J]. Journal of Inorganic Materials, 2023, 38(5): 503-510. |
[2] | MA Xinquan, LI Xibao, CHEN Zhi, FENG Zhijun, HUANG Juntong. BiOBr/ZnMoO4 Step-scheme Heterojunction: Construction and Photocatalytic Degradation Properties [J]. Journal of Inorganic Materials, 2023, 38(1): 62-70. |
[3] | YAO Yishuai, GUO Ruihua, AN Shengli, ZHANG Jieyu, CHOU Kuochih, ZHANG Guofang, HUANG Yarong, PAN Gaofei. In-situ Loaded Pt-Co High Index Facets Catalysts: Preparation and Electrocatalytic Performance [J]. Journal of Inorganic Materials, 2023, 38(1): 71-78. |
[4] | CHEN Hanxiang, ZHOU Min, MO Zhao, YI Jianjian, LI Huaming, XU Hui. 0D/2D CoN/g-C3N4 Composites: Structure and Photocatalytic Performance for Hydrogen Production [J]. Journal of Inorganic Materials, 2022, 37(9): 1001-1008. |
[5] | XUE Hongyun, WANG Congyu, MAHMOOD Asad, YU Jiajun, WANG Yan, XIE Xiaofeng, SUN Jing. Two-dimensional g-C3N4 Compositing with Ag-TiO2 as Deactivation Resistant Photocatalyst for Degradation of Gaseous Acetaldehyde [J]. Journal of Inorganic Materials, 2022, 37(8): 865-872. |
[6] | WEN Zhiqin, HUANG Binrong, LU Taoyi, ZOU Zhengguang. Pressure on the Structure and Thermal Properties of PbTiO3: First-principle Study [J]. Journal of Inorganic Materials, 2022, 37(7): 787-794. |
[7] | CHI Congcong, QU Panpan, REN Chaonan, XU Xin, BAI Feifei, ZHANG Danjie. Preparation of SiO2@Ag@SiO2@TiO2 Core-shell Structure and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(7): 750-756. |
[8] | WANG Xiaojun, XU Wen, LIU Runlu, PAN Hui, ZHU Shenmin. Preparation and Properties of Ag@C3N4 Photocatalyst Supported by Hydrogel [J]. Journal of Inorganic Materials, 2022, 37(7): 731-740. |
[9] | LIU Xuechen, ZENG Di, ZHOU Yuanyi, WANG Haipeng, ZHANG Ling, WANG Wenzhong. Selective Oxidation of Biomass over Modified Carbon Nitride Photocatalysts [J]. Journal of Inorganic Materials, 2022, 37(1): 38-44. |
[10] | LIU Peng, WU Shimiao, WU Yunfeng, ZHANG Ning. Synthesis of Zn0.4(CuGa)0.3Ga2S4/CdS Photocatalyst for CO2 Reduction [J]. Journal of Inorganic Materials, 2022, 37(1): 15-21. |
[11] | WANG Luping, LU Zhanhui, WEI Xin, FANG Ming, WANG Xiangke. Application of Improved Grey Model in Photocatalytic Data Prediction [J]. Journal of Inorganic Materials, 2021, 36(8): 871-876. |
[12] | AN Weijia, LI Jing, WANG Shuyao, HU Jinshan, LIN Zaiyuan, CUI Wenquan, LIU Li, XIE Jun, LIANG Yinghua. Fe(III)/rGO/Bi2MoO6 Composite Photocatalyst Preparation and Phenol Degradation by Photocatalytic Fenton Synergy [J]. Journal of Inorganic Materials, 2021, 36(6): 615-622. |
[13] | XIAO Xiang, GUO Shaoke, DING Cheng, ZHANG Zhijie, HUANG Hairui, XU Jiayue. CsPbBr3@TiO2 Core-shell Structure Nanocomposite as Water Stable and Efficient Visible-light-driven Photocatalyst [J]. Journal of Inorganic Materials, 2021, 36(5): 507-512. |
[14] | XIANG Hui, QUAN Hui, HU Yiyuan, ZHAO Weiqian, XU Bo, YIN Jiang. Piezoelectricity of Graphene-like Monolayer ZnO and GaN [J]. Journal of Inorganic Materials, 2021, 36(5): 492-496. |
[15] | XIONG Jinyan, LUO Qiang, ZHAO Kai, ZHANG Mengmeng, HAN Chao, CHENG Gang. Facilely Anchoring Cu nanoparticles on WO3 Nanocubes for Enhanced Photocatalysis through Efficient Interface Charge Transfer [J]. Journal of Inorganic Materials, 2021, 36(3): 325-331. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||