无机材料学报 ›› 2025, Vol. 40 ›› Issue (5): 489-496.DOI: 10.15541/jim20240459
渠吉发(), 王旭, 张维轩, 张康喆, 熊永恒, 谭文轶(
)
收稿日期:
2024-11-04
修回日期:
2025-01-14
出版日期:
2025-01-24
网络出版日期:
2025-01-24
通讯作者:
谭文轶, 教授. E-mail: twy@njit.edu.cn作者简介:
渠吉发(1990-), 男, 博士. E-mail: qujifa@njit.edu.cn
基金资助:
QU Jifa(), WANG Xu, ZHANG Weixuan, ZHANG Kangzhe, XIONG Yongheng, TAN Wenyi(
)
Received:
2024-11-04
Revised:
2025-01-14
Published:
2025-01-24
Online:
2025-01-24
Contact:
TAN Wenyi, professor. E-mail: twy@njit.edu.cnAbout author:
QU Jifa (1990-), male, PhD. E-mail: qujifa@njit.edu.cn
Supported by:
摘要:
固体氧化物燃料电池(SOFCs)是一种高效的能源转换装置, 但是传统镍基阳极面临严重的硫中毒问题。本研究采用固相法制备了层状钙钛矿氧化物NaYTiO4, 并通过异价离子掺杂进行改性。Ni成功进入钙钛矿层后形成NaYTi0.95Ni0.05O4, 掺杂的Ni不仅可以调控晶体的生长特性, 还可以在还原条件下原位析出。层状钙钛矿中二维分布的碱金属和极性结构带来了优异的化学吸水能力和良好的抗硫中毒能力, 材料的吸附氧比例可以借助Ni掺杂提升至64.5%, 表现出更加卓越的性能。所得材料作为SOFC阳极表现出良好的电催化活性, 以H2为燃料的SOFC在800 ℃的最大功率密度为183.8 mW·cm-2, H2燃料中添加0.1% H2S不仅没有出现明显的毒化现象, 最大功率密度还提升了25.2%, 并且SOFC能够在更易毒化的700 ℃稳定工作40 h, 说明掺杂改性层状钙钛矿氧化物可以显著提升阳极的抗硫中毒性能。
中图分类号:
渠吉发, 王旭, 张维轩, 张康喆, 熊永恒, 谭文轶. 掺杂改性NaYTiO4增强固体氧化物燃料电池阳极抗硫中毒性能[J]. 无机材料学报, 2025, 40(5): 489-496.
QU Jifa, WANG Xu, ZHANG Weixuan, ZHANG Kangzhe, XIONG Yongheng, TAN Wenyi. Enhanced Sulfur-resistance for Solid Oxide Fuel Cells Anode via Doping Modification of NaYTiO4[J]. Journal of Inorganic Materials, 2025, 40(5): 489-496.
图1 NYTO、NYTNO和NYTCO (a)还原前和(b) 800 ℃ H2还原30 min后的XRD图谱
Fig. 1 XRD patterns of NYTO, NYTNO and NYTCO (a) before and (b) after reduction in H2 at 800 ℃ for 30 min
图2 (a, b) NYTO、(c, d) NYTNO和(e, f) NYTCO (a, c, e)还原前和(b, d, f)还原后的SEM照片
Fig. 2 SEM images of (a, b) NYTO, (c, d) NYTNO and (e, f) NYTCO (a, c, e) before and (b, d, f) after reduction
图7 (a) NYTNO和SDC混合物经1000 ℃焙烧2 h后的XRD图谱; (b)全电池截面的SEM照片
Fig. 7 (a) XRD pattern of NYTNO and SDC mixture sintered at 1000 ℃ for 2 h; (b) Cross-sectional SEM images of fuel cell
图8 (a~c)电池的I-V-P曲线; (d)两种电池在800 ℃分别以H2和0.1% H2S-H2为燃料的EIS图谱
Fig. 8 (a-c) I-V-P curves of the cells; (d) EIS spectra of the cells with H2 and 0.1% H2S-H2 as fuel at 800 ℃ (a) NYTO anode and H2 fuel; (b) NYTNO anode and H2 fuel; (c) NYTNO anode and 0.1% H2S-H2 fuel
图9 (a) NYTO和NYTNO复合阳极SOFCs在0.1% H2S-H2中的稳定性测试; (b) NYTNO稳定性测试前后的EIS图谱
Fig. 9 (a) Durability test of SOFCs with NYTO and NYTNO as anodes in 0.1% H2S-H2; (b) EIS spectra of NYTNO before and after stability test
图S1 NYTO和NYTNO在800 ℃静态空气焙烧40 h和10% CO2中处理30 min后的XRD图谱
Fig. 11 S1 XRD patterns of NYTO and NYTNO after calcination at 800 ℃ with static air for 40 h and 10% CO2 for 30 min
[1] | SHI H, TANG J, YU W, et al. Advances in power generation from ammonia via electrocatalytic oxidation in direct ammonia fuel cells. Chemical Engineering Journal, 2024, 488: 150896. |
[2] | SHAO Z, NI M. Fuel cells: materials needs and advances. MRS Bulletin, 2024, 49: 451. |
[3] | 魏康伟, 晏琳瑶, 郭志国, 等. 甲烷基固体氧化物燃料电池阳极的催化重整研究进展. 硅酸盐学报, 2024, 52(10): 3338. |
[4] | SHI H G, LI Q J, TAN W Y, et al. Solid oxide fuel cells in combination with biomass gasification for electric power generation. Chinese Journal of Chemical Engineering, 2020, 28(4): 1156. |
[5] | LEE H S, LEE H M, PARK J Y, et al. Degradation behavior of Ni-YSZ anode-supported solid oxide fuel cell (SOFC) as a function of H2S concentration. International Journal of Hydrogen Energy, 2018, 43(49): 22511. |
[6] | HANIF M A, IBRAHIM N, JALIL A A. Sulfur dioxide removal: an overview of regenerative flue gas desulfurization and factors affecting desulfurization capacity and sorbent regeneration. Environmental Science and Pollution Research, 2020, 27(22): 27515. |
[7] | XIA C G, LI Z Q, WANG S Y, et al. Recent progress on efficient perovskite ceramic anodes for high-performing solid oxide fuel cells. International Journal of Hydrogen Energy, 2024, 62: 331. |
[8] | LIU X, QI H, WEN H, et al. Enhancing electrochemical performance and sulfur tolerance of Ni-based anodes coated by SrTi0.5Mo0.2Ni0.3-xO3-δ perovskite with nano-nickel for solid oxide fuel cells. Fuel, 2023, 350: 128853. |
[9] | JAISWAL S, MONDAL R, KUSHWAHA V, et al. Tuning of redox energy of transition-metal ions through the utilization of interlayer potentials in layered perovskites: development of a titanium-based superior HER catalyst in an acidic medium. ACS Applied Energy Materials, 2023, 6(14): 7323. |
[10] | SONG Y, WANG W, GE L, et al. Rational design of a water-storable hierarchical architecture decorated with amorphous barium oxide and nickel nanoparticles as a solid oxide fuel cell anode with excellent sulfur tolerance. Advanced Science, 2017, 4(11): 1700337. |
[11] | KIM J H, CHERN Z Y, YOO S, et al. Unraveling the mechanism of water-mediated sulfur tolerance via operando surface-enhanced raman spectroscopy. ACS Applied Materials & Interfaces, 2019, 12(2): 2370. |
[12] | ZHENG H, ZHANG Y, WANG Y, et al. Perovskites with enriched oxygen vacancies as a family of electrocatalysts for efficient nitrate reduction to ammonia. Small, 2022, 19(5): 2205625. |
[13] | YANG G, SU C, RAN R, et al. Advanced symmetric solid oxide fuel cell with an infiltrated K2NiF4-type La2NiO4 electrode. Energy & Fuels, 2013, 28(1): 356. |
[14] | SANDOVAL M V, CARDENAS C, CAPOEN E, et al. Performance of La0.5Sr1.5MnO4±δ Ruddlesden-Popper manganite as electrode material for symmetrical solid oxide fuel cells. Part B.The hydrogen oxidation reaction. Electrochimica Acta, 2020, 353: 136494. |
[15] | ZHANG X, TONG Y, LIU T, et al. Robust Ruddlesden-Popper phase Sr3Fe1.3Mo0.5Ni0.2O7-δ decorated with in-situ exsolved Ni nanoparticles as an efficient anode for hydrocarbon fueled solid oxide fuel cells. SusMat, 2022, 2(4): 487. |
[16] | RICCIARDULLI A G, YANG S, SMET J H, et al. Emerging perovskite monolayers. Nature Materials, 2021, 20(10): 1325. |
[17] | XU X, PAN Y, ZHONG Y, et al. Ruddlesden-Popper perovskites in electrocatalysis. Materials Horizons, 2020, 7(10): 2519. |
[18] | 刘思成, 宗鹏飞, 王仲尧, 等. 析出型纳米颗粒SOFC稀土钙钛矿阳极催化材料研究进展. 中国稀土学报, 2024, 42(5): 816. |
[19] | ZHENG X, LI B, SHEN L, et al. Oxygen vacancies engineering of Fe doped LaCoO3 perovskite catalysts for efficient H2S selective oxidation. Applied Catalysis B: Environmental, 2023, 329: 122526. |
[20] | SANDOVAL M V, PIROVANO C, CAPOEN E, et al. In-depth study of the Ruddlesden-Popper LaxSr2-xMnO4±δ family as possible electrode materials for symmetrical SOFC. International Journal of Hydrogen Energy, 2017, 42(34): 21930. |
[21] | KIM K J, RATH M K, KWAK H H, et al. A highly active and redox-stable SrGdNi0.2Mn0.8O4±δ anode with in situ exsolution of nanocatalysts. ACS Catalysis, 2019, 9(2): 1172. |
[22] | ZHAO Y, ZHU Y, ZHU J, et al. Atomic-resolution investigation of structural transformation caused by oxygen vacancy in La0.9Sr0.1TiO3+δ titanate layer perovskite ceramics. Journal of Materials Science & Technology, 2022, 104: 172. |
[23] | 赵秋娜, 罗明生, 刘清龙, 等. 树枝状介孔二氧化硅纳米球负载氧化钴催化剂催化氧化甲苯. 石油学报(石油加工), 2022, 38(5): 1052. |
[24] | WU M, YU H, NI J, et al. Coke-resistant ferrite anode decorated with in-situ exsolved ceria for carbonaceous fuel oxidation. Journal of Power Sources, 2022, 552: 232266. |
[25] | JIANG H, LIANG Z, QIU H, et al. A high-performance and durable direct-ammonia symmetrical solid oxide fuel cell with nano La0.6Sr0.4Fe0.7Ni0.2Mo0.1O3-δ-decorated doped ceria electrode. Nanomaterials, 2024, 14(8): 673. |
[26] | ZHANG L, MENG M, WANG X, et al. A series of copper-free ternary oxide catalysts ZnAlCex used for hydrogen production via dimethyl ether steam reforming. Journal of Power Sources, 2014, 268: 331. |
[27] | DE OLIVEIRA L H, MENEGUIN J G, PEREIRA M V, et al. H2S adsorption on NaY zeolite. Microporous and Mesoporous Materials, 2019, 284: 247. |
[28] | PAN J L, MA G J, SONG L M, et al. High stability/catalytic activity Co-based perovskite as SOFC anode: in-situ preparation by fuel reducing method. Journal of Inorganic Materials, 2024, 39(8): 911. |
[29] | MABAYOJE O, SEREDYCH M, BANDOSZ T J. Enhanced adsorption of hydrogen sulfide on mixed zinc/cobalt hydroxides: effect of morphology and an increased number of surface hydroxyl groups. Journal of Colloid and Interface Science, 2013, 405: 218. |
[30] | BINEESH K V, KIM D K, KIM M I L, et al. Selective catalytic oxidation of H2S over V2O5 supported on TiO2-pillared clay catalysts in the presence of water and ammonia. Applied Clay Science, 2011, 53(2): 204. |
[31] | ZHAO J, XU X, ZHOU W, et al. Proton-conducting La-doped ceria-based internal reforming layer for direct methane solid oxide fuel cells. ACS Applied Materials & Interfaces, 2017, 9(39): 33758. |
[32] | CRAVANZOLA S, CESANO F, GAZIANO F, et al. Sulfur-doped TiO2: structure and surface properties. Catalysts, 2017, 7(7): 214. |
[33] | GUO Z, ZHANG Z, CAO X, et al. Fe-Ti bimetal oxide adsorbent for removing low concentration H2S at room temperature. Environmental Technology, 2021, 43(24): 3693. |
[34] | 卫学玲, 包维维, 邹祥宇, 等. NF@Ni3S4@CoFe-LDHs电极用于尿素辅助碱性析氧. 精细化工, 2023, 40(2): 349. |
[35] | XUE K, CAI C K, XIE M Y, et al. Preparation and electrochemical performance of Pr1+xBa1-xFe2O5+δ cathode materials for solid oxide fuel cells. Journal of Inorganic Materials, 40(4): 363. |
[1] | 陈莉波, 盛盈, 伍明, 宋季岭, 蹇建, 宋二红. Na和O元素共掺杂氮化碳高效光催化制氢[J]. 无机材料学报, 2025, 40(5): 552-562. |
[2] | 孙雨萱, 王政, 时雪, 史颖, 杜文通, 满振勇, 郑嘹赢, 李国荣. 缺陷偶极子热稳定性对Fe掺杂PZT陶瓷机电性能影响研究[J]. 无机材料学报, 2025, 40(5): 545-551. |
[3] | 安然, 林锶, 郭世刚, 张冲, 祝顺, 韩颖超. 铁掺杂纳米羟基磷灰石的制备及紫外吸收性能研究[J]. 无机材料学报, 2025, 40(5): 457-465. |
[4] | 薛柯, 蔡长焜, 谢满意, 李舒婷, 安胜利. 固体氧化物燃料电池Pr1+xBa1-xFe2O5+δ阴极材料的制备及电化学性能研究[J]. 无机材料学报, 2025, 40(4): 363-371. |
[5] | 穆浩洁, 张源江, 喻彬, 付秀梅, 周世斌, 李晓东. ZrO2掺杂Y2O3-MgO纳米复相陶瓷的制备及性能研究[J]. 无机材料学报, 2025, 40(3): 281-289. |
[6] | 张婧慧, 陆晓彤, 毛海雁, 田亚州, 张山林. 烧结助剂对BaZr0.1Ce0.7Y0.2O3-δ电解质烧结行为及电导率的影响[J]. 无机材料学报, 2025, 40(1): 84-90. |
[7] | 沈浩, 陈倩倩, 周渤翔, 唐晓东, 张媛媛. A位La/Sr共掺杂PbZrO3薄膜的制备及储能特性优化[J]. 无机材料学报, 2024, 39(9): 1022-1028. |
[8] | 程俊, 张家伟, 仇鹏飞, 陈立东, 史迅. P掺杂β-FeSi2材料的制备与热电输运性能[J]. 无机材料学报, 2024, 39(8): 895-902. |
[9] | 潘建隆, 马官军, 宋乐美, 郇宇, 魏涛. 燃料还原法原位制备高稳定性/催化活性SOFC钴基钙钛矿阳极[J]. 无机材料学报, 2024, 39(8): 911-919. |
[10] | 赵志翰, 郭鹏, 魏菁, 崔丽, 刘山泽, 张文龙, 陈仁德, 汪爱英. Ti-DLC薄膜压阻性能及载流子输运行为研究[J]. 无机材料学报, 2024, 39(8): 879-886. |
[11] | 李家琪, 李小松, 李煊赫, 朱晓兵, 朱爱民. 暖等离子体合成过渡金属掺杂氧化锰析氧电催化剂[J]. 无机材料学报, 2024, 39(7): 835-844. |
[12] | 叶梓滨, 邹高昌, 吴琪雯, 颜晓敏, 周明扬, 刘江. 阳极支撑型锥管串接式直接碳固体氧化物燃料电池组的制备及性能[J]. 无机材料学报, 2024, 39(7): 819-827. |
[13] | 张琨, 王宇, 朱腾龙, 孙凯华, 韩敏芳, 钟秦. LaNi0.6Fe0.4O3阴极接触材料导电特性调控及其对SOFC电化学性能的影响[J]. 无机材料学报, 2024, 39(4): 367-373. |
[14] | 陈正鹏, 金芳军, 李明飞, 董江波, 许仁辞, 徐韩昭, 熊凯, 饶睦敏, 陈创庭, 李晓伟, 凌意瀚. 双钙钛矿Sr2CoFeO5+δ阴极材料的制备及其中温固体氧化物燃料电池性能研究[J]. 无机材料学报, 2024, 39(3): 337-344. |
[15] | TAM YU Puy Mang, 徐愉, 高泉浩, 周海琼, 张振, 尹浩, 李真, 吕启涛, 陈振强, 马凤凯, 苏良碧. 掺铒CaF2、SrF2、PbF2晶体的光谱性能与团簇结构研究[J]. 无机材料学报, 2024, 39(3): 330-336. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||