无机材料学报 ›› 2024, Vol. 39 ›› Issue (9): 979-991.DOI: 10.15541/jim20240102 CSTR: 32189.14.10.15541/jim20240102
杨鑫1,2,3(), 韩春秋2,4, 曹玥晗2(
), 贺桢2, 周莹1,2(
)
收稿日期:
2024-03-05
修回日期:
2024-04-07
出版日期:
2024-09-20
网络出版日期:
2024-04-19
通讯作者:
曹玥晗, 副研究员. E-mail: yhcao419@163.com;作者简介:
杨鑫(1999-), 男, 硕士研究生. E-mail: yangxin9633@outlook.com
基金资助:
YANG Xin1,2,3(), HAN Chunqiu2,4, CAO Yuehan2(
), HE Zhen2, ZHOU Ying1,2(
)
Received:
2024-03-05
Revised:
2024-04-07
Published:
2024-09-20
Online:
2024-04-19
Contact:
CAO Yuehan, associate professor. E-mail: yhcao419@163.com;About author:
YANG Xin (1999-), male, Master candidate. E-mail: yangxin9633@outlook.com
Supported by:
摘要:
氨不仅是合成化肥的主要原料之一, 而且是一种高能量密度的新型燃料。近年来, 电催化硝酸盐还原合成氨作为一种绿色可持续的合成途径, 具有能源利用率高、碳排放量低等特点, 因此受到了广泛关注, 有望替代高能耗和高碳排放的Haber-Bosch法来高效合成氨。然而, 目前该技术的反应效率、产物选择性以及催化材料稳定性都难以满足应用需求, 迫切需要寻找高效的催化材料, 从而促进电催化硝酸盐还原合成氨技术的进一步发展。近年来, 金属氧化物催化材料在电催化硝酸盐还原合成氨领域展现出良好的催化性能。基于此, 本文综述了金属氧化物电催化硝酸盐还原合成氨的研究进展, 重点概述了电催化硝酸盐还原合成氨的反应机理, 系统介绍了用于电催化硝酸盐还原合成氨的Cu基、Fe基和Ti基等典型催化材料, 以及通过形貌调控、表面重构、氧空位构造、元素掺杂和金属助催化材料负载等策略提高催化反应效率、产物选择性及催化材料稳定性的最新研究进展。最后, 展望了电催化硝酸盐还原合成氨领域面临的挑战及未来的研究方向。
中图分类号:
杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991.
YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides[J]. Journal of Inorganic Materials, 2024, 39(9): 979-991.
Catalyst | NH3 yield rate | Faraday efficiency, FE/% | Stability/h | Ref. |
---|---|---|---|---|
TiO2-x | 45.00 µmol·h-1·mg-1 | 85.00 | 16.00 | [ |
Ru/TiO2 | 35.35 µmol·h-1·cm-2 | >90.00 | 4.50 | [ |
Pd/TiO2 | 66.00 μmol·h-1·cm-2 | 92.00 | 12.00 | [ |
PdCu/TiO2-x | 322.70 μmol·h-1·cm-2 | 80.10 | 48.00 | [ |
Co-TiO2/TP | 1127.00 μmol·h-1·cm-2 | 98.20 | 24.00 | [ |
Fe2TiO5 | 0.73 mmol·h-1·mg-1 | 87.60 | 6.00 | [ |
ZnCr2O4 | 1197.65 μmol·h-1·mg-1 | 90.20 | 15.00 | [ |
Fe2O3 | 328.17 μmol·h-1·cm-2 | 69.80 | 5.00 | [ |
Fe3O4/SS | 596.76 μmol·h-1·cm-2 | 91.50 | 4.00 | [ |
Cu/Fe3O4 | 10.56 mmol·h-1·mg-1 | 100.0 | - | [ |
NiO4 | 1.83 mmol·h-1·mg-1 | 94.70 | 72.00 | [ |
Co3O4/NiO | 6.93 μmol·h-1·mg-1 | - | 3.00 | [ |
Cu/Cu2O | 219.80 μmol·h-1·cm-2 | 93.90 | 12.00 | [ |
Cu2O | 0.14 mmol·h-1·cm-2 | 99.80 | 20.00 | [ |
PdCu/Cu2O | 190.00 μmol·h-1·cm-2 | 94.30 | 12.00 | [ |
CoO NC/graphene | 25.63 mmol·h-1·mg-1 | >98.00 | 6.00 | [ |
Cu/Co3O4 | 1.11 mmol·h-1·cm-2 | 100.70 | 60.00 | [ |
S/Co3O4 | 174.20 μmol·h-1·mg-1 | 89.90 | 7.00 | [ |
Cu/MnOx | 1.72 mmol·h-1·mg-1 | 86.20 | 6.00 | [ |
CuO@MnO2/CF | 0.24 mmol·h-1·cm-2 | 94.90 | 10.00 | [ |
表1 用于eNitRR研究的金属氧化物的性能
Table 1 Properties of metal oxides used in the study of eNitRR
Catalyst | NH3 yield rate | Faraday efficiency, FE/% | Stability/h | Ref. |
---|---|---|---|---|
TiO2-x | 45.00 µmol·h-1·mg-1 | 85.00 | 16.00 | [ |
Ru/TiO2 | 35.35 µmol·h-1·cm-2 | >90.00 | 4.50 | [ |
Pd/TiO2 | 66.00 μmol·h-1·cm-2 | 92.00 | 12.00 | [ |
PdCu/TiO2-x | 322.70 μmol·h-1·cm-2 | 80.10 | 48.00 | [ |
Co-TiO2/TP | 1127.00 μmol·h-1·cm-2 | 98.20 | 24.00 | [ |
Fe2TiO5 | 0.73 mmol·h-1·mg-1 | 87.60 | 6.00 | [ |
ZnCr2O4 | 1197.65 μmol·h-1·mg-1 | 90.20 | 15.00 | [ |
Fe2O3 | 328.17 μmol·h-1·cm-2 | 69.80 | 5.00 | [ |
Fe3O4/SS | 596.76 μmol·h-1·cm-2 | 91.50 | 4.00 | [ |
Cu/Fe3O4 | 10.56 mmol·h-1·mg-1 | 100.0 | - | [ |
NiO4 | 1.83 mmol·h-1·mg-1 | 94.70 | 72.00 | [ |
Co3O4/NiO | 6.93 μmol·h-1·mg-1 | - | 3.00 | [ |
Cu/Cu2O | 219.80 μmol·h-1·cm-2 | 93.90 | 12.00 | [ |
Cu2O | 0.14 mmol·h-1·cm-2 | 99.80 | 20.00 | [ |
PdCu/Cu2O | 190.00 μmol·h-1·cm-2 | 94.30 | 12.00 | [ |
CoO NC/graphene | 25.63 mmol·h-1·mg-1 | >98.00 | 6.00 | [ |
Cu/Co3O4 | 1.11 mmol·h-1·cm-2 | 100.70 | 60.00 | [ |
S/Co3O4 | 174.20 μmol·h-1·mg-1 | 89.90 | 7.00 | [ |
Cu/MnOx | 1.72 mmol·h-1·mg-1 | 86.20 | 6.00 | [ |
CuO@MnO2/CF | 0.24 mmol·h-1·cm-2 | 94.90 | 10.00 | [ |
图3 Cu/Cu2O NWAs的催化性能[63]
Fig. 3 Catalytic performance of Cu/Cu2O NWAs[63] (a) Nitrate conversion efficiency and FE at different voltages; (b) Nuclear magnetic resonance (NMR) spectra of nitrogen sources; (c) Raman spectra; (d) In-situ mass spectrometry spectra; (e) Free energy image
图4 Cu/Cu2O的催化性能表征[51]
Fig. 4 Characterization of catalytic performance of Cu/Cu2O[51] (a) FE of NH3 and NO2− at different potentials; (b) Corresponding NH3 generation rates and bias current densities at different potentials; (c) Potential-induced electrocatalytic reconstruction of Cu2O cube; (d) Free energy diagram
图5 Fe3O4/SS的催化性能表征[48]
Fig. 5 Characterization of catalytic performance of Fe3O4/SS[48] (a) Current density of different product fractions; (b) Ammonia-producing activity of Fe3O4/SS; (c) Cyclic test of Fe3O4/SS at -0.50 V; (d) Free energy diagram
图6 Cu-Fe3O4的催化性能表征[49]
Fig. 6 Characterization of catalytic performance of Cu-Fe3O4[49] (a) NH3 yield and FE of Cu-Fe3O4; (b) Comparison of ammonia yields of different catalytic materials; (c) Free energy diagram
图7 TiO2-x的催化性能表征[40]
Fig. 7 Characterization of catalytic performance of TiO2-x[40] (a) NO3- conversion rates and NH3 FE of TiO2-x; (b) TiO2-x ammonia production cycle test; (c) Differential electrocatalytic mass spectra; (d, e) Free energy diagrams of (d) TiO2 and (e) TiO2-x
图8 PdCu NPs/TiO2-x的催化性能表征[43]
Fig. 8 Characterization of catalytic performance of PdCu NPs/TiO2-x[43] (a) Ammonia production activity and FE of different materials; (b) Product selectivity of different materials; (c, d) Partial crystal orbital layouts of (c) TiO2-x and (d) PdCu NPs/TiO2-x; (e) Density of states diagram; (f) Schematic diagram of catalytic kinetics of the d band center
[1] | FU X, ZHANG J, KANG Y. Recent advances and challenges of electrochemical ammonia synthesis. Chem Catalysis, 2022, 2(10): 2590. |
[2] | QING G, GHAZFAR R, JACKOWSKI S T, et al. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chemical Reviews, 2020, 120(12): 5437. |
[3] | BRUCH Q J, CONNOR G P, MCMILLION N D, et al. Considering electrocatalytic ammonia synthesis via bimetallic dinitrogen cleavage. ACS Catalysis, 2020, 10(19): 10826. |
[4] | MACFARLANE D R, CHEREPANOV P V, CHOI J, et al. A roadmap to the ammonia economy. Joule, 2020, 4(6): 1186. |
[5] | JIANG L, FU X. An ammonia-hydrogen energy roadmap for carbon neutrality: opportunity and challenges in China. Engineering, 2021, 7(12): 1688. |
[6] | ZHENG J, JIANG L, LYU Y, et al. Green synthesis of nitrogen-to- ammonia fixation: past, present, and future. Energy & Environmental Materials, 2022, 5(2): 452. |
[7] |
OUYANG L, LIANG J, LUO Y, et al. Recent advances in electrocatalytic ammonia synthesis. Chinese Journal of Catalysis, 2023, 50: 6.
DOI |
[8] | CHEN W, XU Y, LIU J, et al. Recent developments in Ti-based nanocatalysts for electrochemical nitrate-to-ammonia conversion. Inorganic Chemistry Frontiers, 2023, 10(17): 4901. |
[9] | CHEN W, YANG X, CHEN Z, et al. Emerging applications, developments, prospects, and challenges of electrochemical nitrate-to-ammonia conversion. Advanced Functional Materials, 2023, 33(29): 2300512. |
[10] |
FU X, PEDERSEN J B, ZHOU Y, et al. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science, 2023, 379(6633): 707.
DOI PMID |
[11] | SONG W, YUE L, FAN X, et al. Recent progress and strategies on the design of catalysts for electrochemical ammonia synthesis from nitrate reduction. Inorganic Chemistry Frontiers, 2023, 10(12): 3489. |
[12] | GUO H, YANG P, YANG Y, et al. Vacancy-mediated control of local electronic structure for high-efficiency electrocatalytic conversion of N2 to NH3. Small, 2023, 20(17): 2309007. |
[13] | REICHLE S, FELDERHOFF M, SCHÜTH F. Mechanocatalytic room-temperature synthesis of ammonia from its elements down to atmospheric pressure. Angewandte Chemie International Edition, 2021, 60(50): 26385. |
[14] |
ZOU X, XIE J, WANG C, et al. Electrochemical nitrate reduction to produce ammonia integrated into wastewater treatment: investigations and challenges. Chinese Chemical Letters, 2023, 34(6): 107908.
DOI |
[15] | CHEN G F, YUAN Y, JIANG H, et al. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nature Energy, 2020, 5(8): 605. |
[16] | HE J Z, HU H W, ZHANG L M. Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils. Soil Biology and Biochemistry, 2012, 55: 146. |
[17] | XU H, MA Y, CHEN J, et al. Electrocatalytic reduction of nitrate a step towards a sustainable nitrogen cycle. Chemical Society Reviews, 2022, 51(7): 2710. |
[18] | GAO W, XIE K, XIE J, et al. Alloying of Cu with Ru enabling the relay catalysis for reduction of nitrate to ammonia. Advanced Materials, 2023, 35(19): 2202952. |
[19] | WU Z Y, KARAMAD M, YONG X, et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nature Communications, 2021, 12: 2870. |
[20] | ZHENG W, ZHU L, YAN Z, et al. Self-activated Ni cathode for electrocatalytic nitrate reduction to ammonia: from fundamentals to scale-up for treatment of industrial wastewater. Environmental Science & Technology, 2021, 55(19): 13231. |
[21] | ZHANG X, WANG Y, LIU C, et al. Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chemical Engineering Journal, 2021, 403: 126269. |
[22] | DU H, LUO H, JIANG M, et al. A review of activating lattice oxygen of metal oxides for catalytic reactions: reaction mechanisms, modulation strategies of activity and their practical applications. Applied Catalysis A: General, 2023, 664: 119348. |
[23] | LING T, ZHANG T, GE B, et al. Well-dispersed nickel- and zinc-tailored electronic structure of a transition metal oxide for highly active alkaline hydrogen evolution reaction. Advanced Materials, 2019, 31(16): 1807771. |
[24] | XU Y, YANG H, CHANG X, et al. Introduction to electrocatalytic kinetics. Acta Physico-Chimica Sinica, 2023, 39(4): 2210025. |
[25] |
TANG M, TONG Q, LI Y, et al. Effective and selective electrocatalytic nitrate reduction to ammonia on urchin-like and defect-enriched titanium oxide microparticles. Chinese Chemical Letters, 2023, 34(12): 108410.
DOI |
[26] | HAN S, LI H, LI T, et al. Ultralow overpotential nitrate reduction to ammonia via a three-step relay mechanism. Nature Catalysis, 2023, 6(5): 402. |
[27] | LIAO P, KANG J, XIANG R, et al. Electrocatalytic systems for NOx valorization in organonitrogen synthesis. Angewandte Chemie International Edition, 2024, 63(3): e202311752. |
[28] | YIN H, CHEN Z, XIONG S, et al. Alloying effect-induced electron polarization drives nitrate electroreduction to ammonia. Chem Catalysis, 2021, 1(5): 1088. |
[29] | DU X, HUANG J, ZHANG J, et al. Modulating electronic structures of inorganic nanomaterials for efficient electrocatalytic water splitting. Angewandte Chemie International Edition, 2019, 58(14): 4484. |
[30] |
ZHANG Z, FENG C, WANG D, et al. Selectively anchoring single atoms on specific sites of supports for improved oxygen evolution. Nature Communications, 2022, 13: 2473.
DOI PMID |
[31] | FENG C, ZHANG Z, WANG D, et al. Tuning the electronic and steric interaction at the atomic interface for enhanced oxygen evolution. Journal of the American Chemical Society, 2022, 144(21): 9271. |
[32] | ZHANG Y, ZHENG H, ZHOU K, et al. Conjugated coordination polymer as a new platform for efficient and selective electroreduction of nitrate into ammonia. Advanced Materials, 2023, 35(10): 2209855. |
[33] | REN J T, CHEN L, WANG H Y, et al. Water electrolysis for hydrogen production: from hybrid systems to self-powered/catalyzed devices. Energy & Environmental Science, 2024, 17(1): 49. |
[34] | OGAWA N, IKEDA S. On the electrochemical reduction of nitrate ion in the presence of various metal ions. Analytical Sciences, 1991, 7: 1681. |
[35] | BOESE S W, ARCHER V S. Electrochemical reduction of nitrate in the presence of ytterbium(III). Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1982, 138(2): 273. |
[36] | YU J, YONG X, CAO A, et al. Bi-layer single atom catalysts boosted nitrate-to-ammonia electroreduction with high activity and selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015. |
[37] | JING Q, MEI Z, SHENG X, et al. 3d orbital electron engineering in oxygen electrocatalyst for zinc-air batteries. Chemical Engineering Journal, 2023, 462: 142321. |
[38] |
CHEN H, WU Q, WANG Y, et al. d-sp orbital hybridization: a strategy for activity improvement of transition metal catalysts. Chemical Communications, 2022, 58(56): 7730.
DOI PMID |
[39] | MOLTVED K A, KEPP K P. The chemical bond between transition metals and oxygen: electronegativity, d-orbital effects, and oxophilicity as descriptors of metal-oxygen interactions. Journal of Physical Chemistry C, 2019, 123(30): 18432. |
[40] | JIA R, WANG Y, WANG C, et al. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. ACS Catalysis, 2020, 10(6): 3533. |
[41] | QIU W, XIE M, WANG P, et al. Size-defined Ru nanoclusters supported by TiO2 nanotubes enable low-concentration nitrate electroreduction to ammonia with suppressed hydrogen evolution. Small, 2023, 19(30): 2300437. |
[42] | GUO Y, ZHANG R, ZHANG S, et al. Pd doping-weakened intermediate adsorption to promote electrocatalytic nitrate reduction on TiO2 nanoarrays for ammonia production and energy supply with zinc-nitrate batteries. Energy & Environmental Science, 2021, 14(7): 3938. |
[43] | WU H, GUO H, ZHANG F, et al. Enhanced localized electron density from PdCu nanoparticle loading on a defective TiO2 support for selective nitrate electroreduction to ammonia. Journal of Materials Chemistry A, 2023, 11(41): 22466. |
[44] | ZHAO D, MA C, LI J, et al. Direct eight-electron NO3- to NH3 conversion: using a Co-doped TiO2 nanoribbon array as a high- efficiency electrocatalyst. Inorganic Chemistry Frontiers, 2022, 9(24): 6412. |
[45] | DU H, GUO H, WANG K, et al. Durable electrocatalytic reduction of nitrate to ammonia over defective pseudobrookite Fe2TiO5 nanofibers with abundant oxygen vacancies. Angewandte Chemie International Edition, 2023, 62(5): e202215782. |
[46] | DONG S, NIU A, WANG K, et al. Modulation of oxygen vacancy and zero-valent zinc in ZnCr2O4 nanofibers by enriching zinc for efficient nitrate reduction. Applied Catalysis B: Environmental, 2023, 333: 122772. |
[47] | LI T, TANG C, GUO H, et al. In situ growth of Fe2O3 nanorod arrays on carbon cloth with rapid charge transfer for efficient nitrate electroreduction to ammonia. ACS Applied Materials & Interfaces, 2022, 14(44): 49765. |
[48] | FAN X, XIE L, LIANG J, et al. In situ grown Fe3O4 particle on stainless steel: a highly efficient electrocatalyst for nitrate reduction to ammonia. Nano Research, 2022, 15(4): 3050. |
[49] |
WANG J, WANG Y, CAI C, et al. Cu-doped iron oxide for the efficient electrocatalytic nitrate reduction reaction. Nano Letters, 2023, 23(5): 1897.
DOI PMID |
[50] | WANG Y, LIU C, ZHANG B, et al. Self-template synthesis of hierarchically structured Co3O4@NiO bifunctional electrodes for selective nitrate reduction and tetrahydroisoquinolines semi- dehydrogenation. Science China Materials, 2020, 63(12): 2530. |
[51] | ZHOU N, WANG Z, ZHANG N, et al. Potential-induced synthesis and structural identification of oxide-derived Cu electrocatalysts for selective nitrate reduction to ammonia. ACS Catalysis, 2023, 13(11): 7529. |
[52] | XIAO L, DAI W, MOU S, et al. Coupling electrocatalytic cathodic nitrate reduction with anodic formaldehyde oxidation at ultra-low potential over Cu2O. Energy & Environmental Science, 2023, 16(6): 2696. |
[53] | KANI N C, NGUYEN N H L, MARKEL K, et al. Electrochemical reduction of nitrates on CoO nanoclusters-functionalized graphene with highest mass activity and nearly 100% selectivity to ammonia. Advanced Energy Materials, 2023, 13(17): 2204236. |
[54] | CHEN W, CHEN Z, HUANG Z, et al. Modulating the valence electronic structure of Co3O4 to improve catalytic activity of electrochemical nitrate-to-ammonia conversion. Science China Materials, 2023, 66(10): 3901. |
[55] | NIU Z, FAN S, LI X, et al. Tailored electronic structure by sulfur filling oxygen vacancies boosts electrocatalytic nitrogen oxyanions reduction to ammonia. Chemical Engineering Journal, 2023, 451: 138890. |
[56] | CUI Y, DONG A, ZHOU Y, et al. Interfacially engineered nanoporous Cu/MnOx hybrids for highly efficient electrochemical ammonia synthesis via nitrate reduction. Small, 2023, 19(17): 2207661. |
[57] | XU Y, SHENG Y, WANG M, et al. Interface coupling induced built-in electric fields boost electrochemical nitrate reduction to ammonia over CuO@MnO2 core-shell hierarchical nanoarrays. Journal of Materials Chemistry A, 2022, 10(32): 16883. |
[58] | CAO Y, GUO R, MA M, et al. Effects of electron density variation of active sites in CO2 activation and photoreduction: a review. Acta Physico-Chimica Sinica, 2024, 40(1): 2303029. |
[59] | ZHANG Z, BIAN L, TIAN H, et al. Tailoring the surface and interface structures of copper-based catalysts for electrochemical reduction of CO2 to ethylene and ethanol. Small, 2022, 18(18): 2107450. |
[60] | WANG Y, QIN Y, LI W, et al. Controllable NO release for catheter antibacteria from nitrite electroreduction over the Cu-MOF. Transactions of Tianjin University, 2023, 29(4): 275. |
[61] | POLO-GARZON F, BAO Z, ZHANG X, et al. Surface reconstructions of metal oxides and the consequences on catalytic chemistry. ACS Catalysis, 2019, 9(6): 5692. |
[62] | WANG C, LIU Z, LI C, et al. Progress on electrocatalytic reduction of nitrate on copper-based catalysts. Chinese Science Bulletin, 2021, 66(34): 4411. |
[63] | WANG Y, ZHOU W, JIA R, et al. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angewandte Chemie International Edition, 2020, 59(13): 5350. |
[64] | ZHANG S, LI M, LI J, et al. High-ammonia selective metal- organic framework-derived Co-doped Fe/Fe2O3 catalysts for electrochemical nitrate reduction. Proceedings of the National Academy of Sciences, 2022, 119(6): e2115504119. |
[65] | WANG Z, WEN B, HAO Q, et al. Localized excitation of Ti3+ ions in the photoabsorption and photocatalytic activity of reduced rutile TiO2. Journal of the American Chemical Society, 2015, 137(28): 9146. |
[66] | JIA X, LI J Y, DING S H, et al. Synergy effect of Pd nanoparticles and oxygen vacancies for enhancing TiO2 photocatalytic CO2 reduction. Journal of Inorganic Materials, 2023, 38(11): 1301. |
[67] | WAN J, CHEN W, JIA C, et al. Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties. Advanced Materials, 2018, 30(11): 1705369. |
[68] | FENG T, LI F, HU X, et al. Selective electroreduction of nitrate to ammonia via NbWO6 perovskite nanosheets with oxygen vacancy. Chinese Chemical Letters, 2023, 34(5): 107862. |
[69] | FAN X, ZHAO D, DENG Z, et al. Constructing Co@TiO2 nanoarray heterostructure with Schottky contact for selective electrocatalytic nitrate reduction to ammonia. Small, 2023, 19(17): 2208036. |
[70] | ZHAO X E, LI Z, GAO S, et al. CoS2@TiO2 nanoarray: a heterostructured electrocatalyst for high-efficiency nitrate reduction to ammonia. Chemical Communications, 2022, 58(93): 12995. |
[71] | HE X, LI J, LI R, et al. Ambient ammonia synthesis via nitrate electroreduction in neutral media on Fe3O4 nanoparticles-decorated TiO2 nanoribbon array. Inorganic Chemistry, 2023, 62(1): 25. |
[72] | ZHAO Q, SONG A, DING S, et al. Preintercalation strategy in manganese oxides for electrochemical energy storage: review and prospects. Advanced Materials, 2020, 32(50): 2002450. |
[73] | WANG P, JIN Z, CHEN N, et al. Theoretical investigation of Mo doped α-MnO2 electrocatalytic oxygen evolution reaction. Journal of Inorganic Materials, 2022, 37(5): 541. |
[74] | ZHANG X, WU D, LIU X, et al. Efficient electrocatalytic chlorine evolution under neutral seawater conditions enabled by highly dispersed Co3O4 catalysts on porous carbon. Applied Catalysis B: Environmental, 2023, 330: 122594. |
[75] |
WU J, WANG X, ZHENG W, et al. Identifying and interpreting geometric configuration-dependent activity of spinel catalysts for water reduction. Journal of the American Chemical Society, 2022, 144(41): 19163.
DOI PMID |
[76] | HU Z, HAO L, QUAN F, et al. Recent developments of Co3O4-based materials as catalysts for the oxygen evolution reaction. Catalysis Science & Technology, 2022, 12(2): 436. |
[77] | LU D, LIU T, HAN J, et al. Yolk-shell composite oxides with binuclear Co(II) sites toward low-overpotential nitrate reduction to ammonia. Chemical Engineering Journal, 2023, 477: 146896. |
[78] | PARASHTEKAR A, BOURGEOIS L, TATIPARTI S S V. Grain boundary segregation of nickel vacancies and space charge zone formation in NiO through interactions among Ni2+, O2-, and Ni3+. Materials Letters, 2023, 349: 134743. |
[79] |
LI B, ZHANG Q, XIAO J, et al. Iron-doping enhanced basic nickel carbonate for moisture resistance and catalytic performance of ozone decomposition. Journal of Inorganic Materials, 2022, 37(1): 45.
DOI |
[80] | ZHANG R, WANG Y, OU B, et al. α-Ni(OH)2 surface hydroxyls synergize Ni3+ sites for catalytic formaldehyde oxidation. Journal of Inorganic Materials, 2023, 38(10): 1216. |
[81] | ZHU H, TANG Y, WANG J J, et al. Accelerating electrosynthesis of ammonia from nitrates using coupled NiO/Cu nanocomposites. Chemical Communications, 2024, 60(16): 2184. |
[82] | WANG Y, LI H, ZHOU W, et al. Structurally disordered RuO2 nanosheets with rich oxygen vacancies for enhanced nitrate electroreduction to ammonia. Angewandte Chemie International Edition, 2022, 61(19): e202202604. |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[3] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[4] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[5] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[6] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[7] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[8] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[9] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[10] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[11] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[12] | 李红兰, 张俊苗, 宋二红, 杨兴林. Mo/S共掺杂的石墨烯用于合成氨: 密度泛函理论研究[J]. 无机材料学报, 2024, 39(5): 561-568. |
[13] | 杨博, 吕功煊, 马建泰. 镍铁氢氧化物-磷化钴复合电极电催化分解水研究[J]. 无机材料学报, 2024, 39(4): 374-382. |
[14] | 李宗晓, 胡令祥, 王敬蕊, 诸葛飞. 氧化物神经元器件及其神经网络应用[J]. 无机材料学报, 2024, 39(4): 345-358. |
[15] | 鲍可, 李西军. 化学气相沉积法制备智能窗用热致变色VO2薄膜的研究进展[J]. 无机材料学报, 2024, 39(3): 233-258. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||