无机材料学报 ›› 2023, Vol. 38 ›› Issue (5): 529-536.DOI: 10.15541/jim20220576 CSTR: 32189.14.10.15541/jim20220576
所属专题: 【能源环境】污染物去除(202312)
郭春霞(), 陈伟东(
), 闫淑芳, 赵学平, 杨傲, 马文
收稿日期:
2022-09-29
修回日期:
2022-12-15
出版日期:
2022-12-28
网络出版日期:
2022-12-28
通讯作者:
陈伟东, 教授. E-mail: weidongch@163.com作者简介:
郭春霞(1991-), 女, 博士研究生, 讲师. E-mail: chunchun123.cool@imut.edu.cn
基金资助:
GUO Chunxia(), CHEN Weidong(
), YAN Shufang, ZHAO Xueping, YANG Ao, MA Wen
Received:
2022-09-29
Revised:
2022-12-15
Published:
2022-12-28
Online:
2022-12-28
Contact:
CHEN Weidong, professor. E-mail: weidongch@163.comAbout author:
GUO Chunxia (1991-), female, PhD candidate, lecturer. E-mail: chunchun123.cool@imut.edu.cn
Supported by:
摘要:
长期饮用砷污染的水会严重危害人类的健康, 因此亟待开发一种高效且便于分离的除砷吸附剂。本研究采用水热法构建了一种新型高效的除砷吸附材料——埃洛石纳米管负载锆氧化物材料(ZrO2/HNT)。使用不同手段对制备的复合材料的组成、结构和形貌进行表征, 发现氧化锆纳米颗粒均匀分布在埃洛石纳米管外壁上, 晶型为单斜结构。研究表明, ZrO2/HNT可快速、有效地去除溶液中的As(V), 吸附反应在30 min内达到平衡。在25 ℃, As(V)的最高吸附容量为27.46 mg/g, 吸附容量随溶液pH升高而降低, 共存离子(除PO43-离子外)对As(V)的吸附性能影响不大。ZrO2/HNT对As(V)的吸附动力学数据符合准二级动力学模型。吉布斯自由能计算结果和Dubinin-Radushkevich(D-R)等温模型拟合结果表明, As(V)去除过程是吸热、化学吸附反应。傅里叶变换红外光谱(FT-IR)和X射线光电子能谱(XPS)研究表明, As(V)的去除机制主要是As(V)与ZrO2/HNT吸附材料中ZrO2表面的羟基发生配体交换, 最终形成稳定的内层配合物。本研究表明合成的ZrO2/HNT吸附剂可用于去除水溶液中的As(V)。
中图分类号:
郭春霞, 陈伟东, 闫淑芳, 赵学平, 杨傲, 马文. 埃洛石纳米管负载锆氧化物吸附水中砷的研究[J]. 无机材料学报, 2023, 38(5): 529-536.
GUO Chunxia, CHEN Weidong, YAN Shufang, ZHAO Xueping, YANG Ao, MA Wen. Adsorption of Arsenate in Water by Zirconia-halloysite Nanotube Material[J]. Journal of Inorganic Materials, 2023, 38(5): 529-536.
图2 HNT和ZrO2/HNT的形貌及元素分布图
Fig. 2 Morphologies and element distribution of HNT and ZrO2/HNT (a, b) TEM images of HNT (a) and ZrO2/HNT (b); (c) HRTEM image of ZrO2/HNT; (d-i) TEM-EDS mapping images of ZrO2/HNT-As(V) (d), Al (e), Si (f), O (g), Zr (h), and As (i)
Model | Parameter | ||
---|---|---|---|
Psedo-first-order | Qe/(mg•g-1) | K1/min-1 | R2 |
20.49 | 0.6985 | 0.924 | |
Psedo-second-order | Qe/(mg•g-1) | K2/(g•mg-1•min-1) | R2 |
21.16 | 0.0548 | 0.984 |
表1 ZrO2/HNT对As(V)的吸附动力学拟合参数
Table 1 Adsorption kinetics parameters for As(V) adsorption on ZrO2/HNT
Model | Parameter | ||
---|---|---|---|
Psedo-first-order | Qe/(mg•g-1) | K1/min-1 | R2 |
20.49 | 0.6985 | 0.924 | |
Psedo-second-order | Qe/(mg•g-1) | K2/(g•mg-1•min-1) | R2 |
21.16 | 0.0548 | 0.984 |
Isotherm model | Parameter | Temperature/℃ | ||
---|---|---|---|---|
25 | 35 | 45 | ||
Langmuir model | Qm/(mg•g-1) | 27.45819 | 30.03619 | 31.59709 |
kL/(L•mg-1) | 1.75844 | 2.36858 | 3.45464 | |
R2 | 0.9972 | 0.9994 | 0.9999 | |
Freundlich model | n | 9.30552 | 9.26368 | 9.98317 |
kF/(mg1-(1/n)•L1/n•g-1) | 17.15745 | 18.92668 | 20.52261 | |
R2 | 0.7370 | 0.76954 | 0.74909 | |
D-R model | qm/(mol•g-1) | 8.09×10-4 | ||
β/(mol2•kJ-2) | 4.42×10-9 | |||
E/(kJ•mol-1) | 10.64 | |||
R2 | 0.94213 |
表2 ZrO2/HNT吸附剂对As(V)的吸附等温线拟合参数
Table 2 Fitting results of isotherms for As(V) adsorption onto ZrO2/HNT
Isotherm model | Parameter | Temperature/℃ | ||
---|---|---|---|---|
25 | 35 | 45 | ||
Langmuir model | Qm/(mg•g-1) | 27.45819 | 30.03619 | 31.59709 |
kL/(L•mg-1) | 1.75844 | 2.36858 | 3.45464 | |
R2 | 0.9972 | 0.9994 | 0.9999 | |
Freundlich model | n | 9.30552 | 9.26368 | 9.98317 |
kF/(mg1-(1/n)•L1/n•g-1) | 17.15745 | 18.92668 | 20.52261 | |
R2 | 0.7370 | 0.76954 | 0.74909 | |
D-R model | qm/(mol•g-1) | 8.09×10-4 | ||
β/(mol2•kJ-2) | 4.42×10-9 | |||
E/(kJ•mol-1) | 10.64 | |||
R2 | 0.94213 |
Adsorbent | pH | Adsorption capacity/ (mg•g-1) | Ref. |
---|---|---|---|
ZrO2/multiwall carbon nanotube | 6 | 5 | [ |
Ferric oxyhydroxides/ activated carbon | 7 | 5 | [ |
Cerium-loaded cation exchange resin | 5-6 | 1.03 | [ |
Hydrous zirconium oxide/D401 | 3.16 | 11.84 | [ |
Magnetic iron oxide/ carbon encapsulates | 7 | 17.9 | [ |
Fe3O4-MnO2/graphite | 2-12 | 12.2 | [ |
ZrO2/sawdust | 3-11 | 12 | [ |
Iron oxide/carbon nanotubes | 5.5 | 9.74 | [ |
γ-Fe2O3 cores coated with ZrO2 | 9 | 18.3 | [ |
ZrO2/HNT | 3 | 27.46 | This study |
表3 不同吸附剂去除As(V)的效能比较
Table 3 Comparison of ZrO2/HNT with other reported similar adsorbents for As(V) adsorption
Adsorbent | pH | Adsorption capacity/ (mg•g-1) | Ref. |
---|---|---|---|
ZrO2/multiwall carbon nanotube | 6 | 5 | [ |
Ferric oxyhydroxides/ activated carbon | 7 | 5 | [ |
Cerium-loaded cation exchange resin | 5-6 | 1.03 | [ |
Hydrous zirconium oxide/D401 | 3.16 | 11.84 | [ |
Magnetic iron oxide/ carbon encapsulates | 7 | 17.9 | [ |
Fe3O4-MnO2/graphite | 2-12 | 12.2 | [ |
ZrO2/sawdust | 3-11 | 12 | [ |
Iron oxide/carbon nanotubes | 5.5 | 9.74 | [ |
γ-Fe2O3 cores coated with ZrO2 | 9 | 18.3 | [ |
ZrO2/HNT | 3 | 27.46 | This study |
Thermodynamic parameter | |||
---|---|---|---|
Temperature/℃ | ΔG°/ (kJ•mol-1) | ΔH°/ (kJ•mol-1) | ΔS°/ (kJ•mol-1•K-1) |
25 | -20.41 | 37.75 | 0.19 |
35 | -21.96 | ||
45 | -24.33 |
表4 ZrO2/HNT对As(V)吸附的热力学计算结果
Table 4 Temperature-dependent thermodynamic characteristics of As(V) adsorption on ZrO2/HNT
Thermodynamic parameter | |||
---|---|---|---|
Temperature/℃ | ΔG°/ (kJ•mol-1) | ΔH°/ (kJ•mol-1) | ΔS°/ (kJ•mol-1•K-1) |
25 | -20.41 | 37.75 | 0.19 |
35 | -21.96 | ||
45 | -24.33 |
图9 ZrO2/HNT材料吸附As(V)(1)前(2)后的(a) XPS总谱图, (b) As3d和(c) Zr3d XPS分谱图
Fig. 9 (a) Survey, (b) As3d, and (c) Zr3d XPS spectra of (1) ZrO2/HNT and (2) ZrO2/HNT-As(V)
[1] |
PODGORSKI J, BERG M. Global threat of arsenic in groundwater. Science, 2020, 368(6493): 845.
DOI PMID |
[2] |
UNGUREANU G, SANTOS S, BOAVENTURA R, et al. Arsenic and antimony in water and wastewater: overview of removal techniques with special reference to latest advances in adsorption. Journal of Environmental Management, 2015, 151: 326.
DOI PMID |
[3] |
ZHANG Y, LIU H, GAO F, et al. Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment. EnergyChem, 2022, 4(4): 100078.
DOI URL |
[4] |
LIU X, VERMA G, CHEN Z, et al. Metal-organic framework nanocrystal-derived hollow porous materials: synthetic strategies and emerging applications. The Innovation, 2022, 3(5): 100281.
DOI URL |
[5] |
WANG X X, LI X, WANG J Q, et al. Recent advances in carbon nitride-based nanomaterials for the removal of heavy metal ions from aqueous solution. Journal of Inorganic Materials, 2020, 35(3): 260.
DOI |
[6] |
ZHENG Y M, YU L, WU D, et al. Removal of arsenite from aqueous solution by a zirconia nanoparticle. Chemical Engineering Journal, 2012, 188: 15.
DOI URL |
[7] |
SHEHZAD K, AHMAD M, XIE C, et al. Mesoporous zirconia nanostructures (MZN) for adsorption of As(III) and As(V) from aqueous solutions. Journal of Hazardous Materials, 2019, 373: 75.
DOI PMID |
[8] |
HE X Y, DENG F, SHEN T T, et al. Exceptional adsorption of arsenic by zirconium metal-organic frameworks: engineering exploration and mechanism insight. Journal of Colloid and Interface Science, 2019, 539: 223.
DOI PMID |
[9] | SHAO P H, DING L, LUO J F, et al. Lattice-defect-enhanced adsorption of arsenic on zirconia nanospheres: a combined experimental and theoretical study. ACS Applied Materials & Interfaces, 2019, 11(33): 29736. |
[10] |
LATA S, SAMADDER S R. Removal of arsenic from water using nano adsorbents and challenges: a review. Journal of Environmental Management, 2016, 166: 387.
DOI PMID |
[11] | LUO J M, LUO X B, HU C Z, et al. Zirconia (ZrO2) embedded in carbon nanowires via electrospinning for efficient arsenic removal from water combined with DFT studies. ACS Applied Materials & Interfaces, 2016, 8(29): 18912. |
[12] |
ADDO NTIM S, MITRA S. Adsorption of arsenic on multiwall carbon nanotube-zirconia nanohybrid for potential drinking water purification. Journal of Colloid and Interface Science, 2012, 375(1): 154.
DOI PMID |
[13] | SARKAR A, PAUL B. Evaluation of the performance of zirconia- multiwalled carbon nanotube nanoheterostructures in adsorbing As(III) from potable water from the perspective of physical chemistry and chemical physics with a special emphasis on approximate site energy distribution. Chemosphere, 2020, 242: 15. |
[14] |
SARKAR A, PAUL B. Analysis of the performance of zirconia- multiwalled carbon nanotube nanoheterostructures in adsorbing As(V) from potable water from the aspects of physical chemistry with an emphasis on adsorption site energy distribution and density functional theory calculations. Microporous and Mesoporous Materials, 2020, 302: 110191.
DOI URL |
[15] | YUAN P, TAN D Y, ANNABI-BERGAYA F. Properties and applications of halloysite nanotubes: recent research advances and future prospects. Applied Clay Science, 2015, 112: 75. |
[16] |
LVOV Y, WANG W, ZHANG L, et al. Halloysite clay nanotubes for loading and sustained release of functional compounds. Advanced Materials, 2016, 28(6): 1227.
DOI URL |
[17] |
SMEDLEY P L, KINNIBURGH D G. A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 2002, 17(5): 517.
DOI URL |
[18] |
STYBLO M, DEL RAZO L M, VEGA L, et al. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Archives of Toxicology, 2000, 74(6): 289.
DOI PMID |
[19] |
CAI N, DAI Q, WANG Z L, et al. Toughening of electrospun poly(L-lactic acid) nanofiber scaffolds with unidirectionally aligned halloysite nanotubes. Journal of Materials Science, 2015, 50(3): 1435.
DOI URL |
[20] |
ZHENG P W, DU Y Y, MA X F. Selective fabrication of iron oxide particles in halloysite lumen. Materials Chemistry and Physics, 2015, 151: 14.
DOI URL |
[21] |
SEREDYCH M, BANDOSZ T J. Effects of surface features on adsorption of SO2on graphite oxide/Zr(OH)4 composites. Journal of Physical Chemistry C, 2010, 114(34): 14552.
DOI URL |
[22] |
SHEHZAD K, AHMAD M, HE J Y, et al. Synthesis of ultra-large ZrO2 nanosheets as novel adsorbents for fast and efficient removal of As(III) from aqueous solutions. Journal of Colloid and Interface Science, 2019, 533: 588.
DOI URL |
[23] |
HE Q, YANG D, DENG X L, et al. Preparation, characterization and application of N-2-pyridylsuccinamic acid-functionalized halloysite nanotubes for solid-phase extraction of Pb(II). Water Research, 2013, 47(12): 3976.
DOI URL |
[24] | SONG Y R, YUAN P, DU P X, et al. A novel halloysite-CeOx nanohybrid for efficient arsenic removal. Applied Clay Science, 2020, 186: 10. |
[25] |
SONG X L, ZHOU L, ZHANG Y, et al. A novel cactus-like Fe3O4/halloysite nanocomposite for arsenite and arsenate removal from water. Journal of Cleaner Production, 2019, 224: 573.
DOI URL |
[26] |
ARCIBAR-OROZCO J A, AVALOS-BORJA M, RANGEL-MENDEZ J R. Effect of phosphate on the particle size of ferric oxyhydroxides anchored onto activated carbon: As(V) removal from water. Environmental Science & Technology, 2012, 46(17): 9577.
DOI URL |
[27] |
HE Z L, TIAN S L, NING P. Adsorption of arsenate and arsenite from aqueous solutions by cerium-loaded cation exchange resin. Journal of Rare Earths, 2012, 30(6): 563.
DOI URL |
[28] |
LI C H, XU W, JIA D M, et al. Removal of arsenic from drinking water by using the Zr-loaded resin. Journal of Chemical and Engineering Data, 2013, 58(2): 427.
DOI URL |
[29] |
WU Z X, LI W, WEBLEY P A, et al. General and controllable synthesis of novel mesoporous magnetic iron oxide@carbon encapsulates for efficient arsenic removal. Advanced Materials, 2012, 24(4): 485.
DOI URL |
[30] |
CHANDRA V, PARK J, CHUN Y, et al. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano, 2010, 4(7): 3979.
DOI PMID |
[31] | SETYONO D, VALIYAYEETTIL S. Chemically modified sawdust as renewable adsorbent for arsenic removal from water. ACS Sustainable Chemistry & Engineering, 2014, 2(12): 2722. |
[32] |
MA J, ZHU Z L, CHEN B, et al. One-pot, large-scale synthesis of magnetic activated carbon nanotubes and their applications for arsenic removal. Journal of Materials Chemistry A, 2013, 1(15): 4662.
DOI URL |
[33] |
FENG C, ALDRICH C, EKSTEEN J J, et al. Removal of arsenic from alkaline process waters of gold cyanidation by use of gamma- Fe2O3@ZrO2nanosorbents. Hydrometallurgy, 2017, 174: 71.
DOI URL |
[34] |
LIANG Q W, LUO H J, GENG J J, et al. Facile one-pot preparation of nitrogen-doped ultra-light graphene oxide aerogel and its prominent adsorption performance of Cr(VI). Chemical Engineering Journal, 2018, 338: 62.
DOI URL |
[35] | LI R, YANG W, SU Y, et al. Ionic potential: a general material criterion for the selection of highly efficient arsenic adsorbents. Journal of Materials Science & Technology, 2014, 30(10): 949. |
[36] |
SUN T Y, ZHAO Z W, LIANG Z J, et al. Efficient removal of arsenite through photocatalytic oxidation and adsorption by ZrO2- Fe3O4 magnetic nanoparticles. Applied Surface Science, 2017, 416: 656.
DOI URL |
[1] | 吴光宇, 舒松, 张洪伟, 李建军. 接枝内酯基活性炭增强苯乙烯吸附性能研究[J]. 无机材料学报, 2024, 39(4): 390-398. |
[2] | 谢天, 宋二红. 弹性应变对C、H、O在过渡金属氧化物表面吸附的影响[J]. 无机材料学报, 2024, 39(11): 1292-1300. |
[3] | 晁少飞, 薛艳辉, 吴琼, 伍复发, MUHAMMAD Sufyan Javed, 张伟. MXene异质结Ti-O-H-O电子快速通道促进高效率储钾[J]. 无机材料学报, 2024, 39(11): 1212-1220. |
[4] | 马晓森, 张丽晨, 刘砚超, 汪全华, 郑家军, 李瑞丰. 13X@SiO2合成及其甲苯吸附性能[J]. 无机材料学报, 2023, 38(5): 537-543. |
[5] | 王世怡, 冯爱虎, 李晓燕, 于云. Fe3O4负载Ti3C2Tx对Pb(II)的吸附性能研究[J]. 无机材料学报, 2023, 38(5): 521-528. |
[6] | 张万文, 罗建强, 刘淑娟, 马建国, 张小平, 杨松旺. 氧化锆间隔层的低温喷涂制备及其三层结构钙钛矿太阳能电池应用性能[J]. 无机材料学报, 2023, 38(2): 213-218. |
[7] | 于业帆, 徐玲, 倪忠斌, 施冬健, 陈明清. 普鲁士蓝/生物炭材料的制备及其氨氮吸附机理[J]. 无机材料学报, 2023, 38(2): 205-212. |
[8] | 凌洁, 周安宁, 王文珍, 贾忻宇, 马梦丹. Cu/Mg比对Cu/Mg-MOF-74的CO2吸附性能的影响[J]. 无机材料学报, 2023, 38(12): 1379-1386. |
[9] | 汤亚, 孙盛睿, 樊佳, 杨庆峰, 董满江, 寇佳慧, 刘阳桥. 粉煤灰衍生水合硅酸钙PEI改性及吸附去除Cu(II)与催化降解有机污染物[J]. 无机材料学报, 2023, 38(11): 1281-1291. |
[10] | 戴洁燕, 冯爱虎, 米乐, 于洋, 崔苑苑, 于云. NaY沸石分子吸附涂层对典型空间污染物的吸附机制研究[J]. 无机材料学报, 2023, 38(10): 1237-1244. |
[11] | 王红宁, 黄丽, 清江, 马腾洲, 黄维秋, 陈若愚. 有机-无机氧化硅空心球的合成及VOCs吸附应用[J]. 无机材料学报, 2022, 37(9): 991-1000. |
[12] | 王亚宁, 张玉琪, 宋索成, 陈若梦, 刘亚雄, 段玉岗. 氧化锆陶瓷扫描光固化成形与脱脂烧结工艺研究[J]. 无机材料学报, 2022, 37(3): 303-309. |
[13] | 刘城, 赵倩, 牟志伟, 雷洁红, 段涛. 新型铋基SiOCNF复合膜对放射性气态碘的吸附性能[J]. 无机材料学报, 2022, 37(10): 1043-1050. |
[14] | 周帆, 毕辉, 黄富强. 用稻壳制备亚甲基蓝高吸附容量的超高比表面积活性炭[J]. 无机材料学报, 2021, 36(8): 893-903. |
[15] | 余祥坤, 刘坤, 李志鹏, 赵雨露, 沈锦优, 茆平, 孙爱武, 蒋金龙. 铜/凹凸棒石复合材料高效吸附放射性碘离子性能[J]. 无机材料学报, 2021, 36(8): 856-864. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||