无机材料学报 ›› 2021, Vol. 36 ›› Issue (6): 592-600.DOI: 10.15541/jim20200266 CSTR: 32189.14.10.15541/jim20200266
所属专题: 【能源环境】金属有机框架材料(202309)
收稿日期:2020-05-15
									
				
											修回日期:2020-07-09
									
				
									
				
											出版日期:2021-06-20
									
				
											网络出版日期:2020-08-28
									
			通讯作者:
					韩正波, 教授. E-mail: ceshzb@lnu.edu.cn
							作者简介:李婷婷(1980-), 女, 博士. E-mail: litingting2046@163.com
				
							基金资助:
        
               		LI Tingting1,2( ), ZHANG Zhiming1, HAN Zhengbo2(
), ZHANG Zhiming1, HAN Zhengbo2( )
)
			  
			
			
			
                
        
    
Received:2020-05-15
									
				
											Revised:2020-07-09
									
				
									
				
											Published:2021-06-20
									
				
											Online:2020-08-28
									
			Contact:
					HAN Zhengbo, professor. E-mail: ceshzb@lnu.edu.cn   
							About author:LI Tingting(1980-), female, PhD. E-mail: litingting2046@163.com				
							Supported by:摘要:
基于静电纺丝技术的金属有机骨架纳米纤维膜材料(Metal-Organic Frameworks Nanofibrous Membranes, MOFs NFMs)综合了无机多孔材料和聚合物纳米纤维的优势, 是一类具有广阔应用前景的功能性材料。目前已经开发出不同功能的MOFs NFMs, 其应用领域也在不断扩展。本文介绍了MOFs NFMs从制备研究向应用研究的发展历程, 详述了现阶段制备MOFs NFMs的主要方法, 包括混合纺丝法、原位生长法、多步种子生长法和原子层沉积法等; 阐述了目前MOFs NFMs的主要应用领域, 如吸附分离、多相催化、传感检测等; 展望了MOFs NFMs的发展方向和趋势。
中图分类号:
李婷婷, 张志明, 韩正波. 基于静电纺丝技术的聚合物基MOFs纳米纤维膜的研究进展[J]. 无机材料学报, 2021, 36(6): 592-600.
LI Tingting, ZHANG Zhiming, HAN Zhengbo. Research Progress in Polymer-based Metal-organic Framework Nanofibrous Membranes Based on Electrospinning[J]. Journal of Inorganic Materials, 2021, 36(6): 592-600.
 
																													图3 (a)ZIF-8/PAN纤维的制备方法和机理[22]; (b)PAN NFM上原位生长UiO-66-NH2示意图[23]; (c)ZIF-8、MIL-88B(Fe)、HKUST-1和MIL-53(Al) NFMs的制备过程[25]
Fig. 3 (a) Preparation method and formation mechanism of the in situ ZIF-8/PAN fibers[22]; (b) Scheme of in situ growth of UiO-66-NH2 on PAN NFM[23]; (c) Fabrication process of ZIF-8, MIL-88B(Fe), HKUST-1 and MIL-53(Al) NFMs[25]
 
																													图5 (a)PAN/ZnO/ZIF-8和PAN/Al2O3/MIL-53-NH2的SEM照片[28]; (b)ALD法制备UiO-66-NH2 NFM的示意图[29]
Fig. 5 (a) SEM images of PAN/ZnO/ZIF-8 and PAN/Al2O3/MIL-53-NH2 NFMs[28], and (b) schematic illustration of UiO-66-NH2 NFMs prepared through ALD[29]
 
																													图6 以聚多巴胺为成核中心在“惰性”聚合物NFM上沉积MOF[30]
Fig. 6 Effective deposition MOF on the ‘‘inert’’ polymer fibrous membranes by using polydopamine layer as nucleation center[30]
 
																													图7 (a)PAN/ZIF-8 NFMs对CO2的吸附等温线和CO2/N2的吸附选择率[33]; (b)Bio-MOF/PAN过滤器对阳离子染料的选择性吸附[37]; (c)ZIF-67/CA NFM对Cu(II)和Cr(VI)的吸附机理示意图[39]
Fig. 7 (a) CO2 adsorption isotherms and CO2/N2 adsorption selectivity of PAN/ZIF-8 NFMs[33], (b) selective adsorption of cationic dyes by bio-MOF/PAN filter[37], and (c) adsorption mechanism of Cu(II) and Cr(VI) on the ZIF-67/CA NFM surface[39]
 
																													图8 (a)PLA/ZIF-8@GO NFM光催化降解MB的可能机理[41]; (b)UiO-66-NH2 NFM用于处理有毒工业化学品和化学战剂的示意图[42]
Fig. 8 (a) Possible mechanism of photocatalytic degradation of MB on PLA/ZIF-8@GO fibers[41], and (b) illustration of UiO-66-NH2 NFM used for protection against toxic industrial chemicals and chemical warfare agents[42]
 
																													图9 (a)Zn-MOF/PST-1NFM的荧光照片[45]; (b)荧光试纸的可逆性实验[47]
Fig. 9 (a) Fluorescent image of Zn-MOF/PST-1 NFM[45], and (b) reversibility test of the fluorescent test paper with NB and methanol[47]
 
																													图10 (a)定向静电纺丝纤维中质子传导示意图和横截面取向纳米纤维的HRTEM照片[55]; (b)CS-PEO和CS-PEO-3% ZIF-8 NFMs对金黄色葡萄球菌的抗菌活性[56]
Fig. 10 (a) Proton conductive process of oriented electrospun nanofiber and HRTEM image of cross-sectional aligned nanofiber[55], and (b) antibacterial activities of CS-PEO and CS-PEO-3% ZIF-8 NFMs[56]
| [1] | KALAJ M, BENTZ K C, AYALA JR S, et al. MOF-polymer hybrid materials: from simple composites to tailored architectures. Chemical Reviews, 2020,120(16):8267-8302. DOI URL | 
| [2] | ZHANG Y, YUN S, FENG X, et al. Preparation of nanofibrous metal-organic framework filters for efficient air pollution control. Journal of the American Chemical Society, 2016,138(18):5785-5788. DOI URL | 
| [3] | ZHAO J, LEE D T, YAGA R W, et al. Ultra-fast degradation of chemical warfare agents using MOF-nanofiber kebabs. Angewandte Chemie International Edition, 2016,55(42):13224-13228. DOI URL | 
| [4] | ZHANG Y, GUAN J, WANG X, et al. Balsam-pear-skin-like porous polyacrylonitrile nanofibrous membranes grafted with polyethyleneimine for postcombustion CO2 capture. ACS Applied Materials & Interfaces, 2017,9(46):41087-41098. | 
| [5] | WANG C, LIU C, LI J, et al. Electrospun metal-organic framework derived hierarchical carbon nanofibers with high performance for supercapacitors. Chemical Communications, 2017,53(10):1751-1754. DOI URL | 
| [6] | ZHANG Y, ZHANG Y, WANG X, et al. Ultrahigh metal-organic framework loading and flexible nanofibrous membranes for efficient CO2 capture with long-term, ultrastable recyclability. ACS Applied Materials & Interfaces, 2018,10(40):34802-34810. | 
| [7] | GIBSON P, SCHREUDER-GIBSON H, RIVIN D. Transport properties of porous membranes based on electrospun nanofibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 187-188:469-481. | 
| [8] | CENTRON A, YANGA Y, SPEAKMAN S, et al. Growth of metal-organic frameworks on polymer surfaces. Journal of the American Chemical Society, 2010,132(44):15687-15691. DOI URL | 
| [9] | OSTERMANN R, CRAVILLON J, WEIDMANN C, et al. Metal- organic framework nanofibers via electrospinning. Chemical Communications, 2011,47(1):442-444. DOI URL | 
| [10] | LAURILA E, THUNBERG J, ARGENT S P, et al. Enhanced synthesis of metal-organic frameworks on the surface of electrospun cellulose nanofibers. Advanced Engineering Materials, 2015,17(9):1282-1286. DOI URL | 
| [11] | ROSE M, BOHRINGER B, JOLLY M, et al. MOF processing by electrospinning for functional textiles. Advanced Engineering Materials, 2011,13(4):356-360. DOI URL | 
| [12] | LIAN Z, HUIMIN L, ZHAOFEI O. In situ crystal growth of zeolitic imidazolate frameworks (ZIF) on electrospun polyurethane nanofibers. Dalton Transactions, 2014,43(18):6684-6688. DOI URL | 
| [13] | ARMSTRONG M R, SHAN B, MARINGANTI S V, et al. Hierarchical pore structures and high ZIF-8 loading on matrimid electrospun fibers by additive removal from a blended polymer precursor. Industrial & Engineering Chemistry Research, 2016,55(37):9944-9951. DOI URL | 
| [14] | AN S, LEE J S, JOSHI B N, et al. Freestanding fiber mats of zeolitic imidazolate framework 7 via one-step, scalable electrospinning. Journal of Applied Polymer Science, 2016,133(32):43788. | 
| [15] | ISMAIL F M, ABDELLAH A M, ALI P A, et al. Bilayer sandwich-like membranes of metal organic frameworks electrospun polymeric nanofibers via SiO2 nanoparticles seeding. Materials Today Communications, 2017,12:119-124. DOI URL | 
| [16] | HAO Z, WU J, WANG C, et al. Electrospun polyimide/metal- organic framework nanofibrous membrane with superior thermal stability for efficient PM2.5 capture. ACS Applied Materials & Interfaces, 2019,11(12):11904-11909. | 
| [17] | EFOME J E, RANA D, MATSUURA T, et al. Insight studies on metal-organic framework nanofibrous membrane adsorption and activation for heavy metal ions removal from aqueous solution. ACS Applied Materials & Interfaces, 2018,10(22):18619-18629. | 
| [18] | EFOME J E, RANA D, MATSUURA T, et al. Experiment and modeling for flux and permeate concentration of heavy metal ion in adsorptive membrane filtration using a metal-organic framework incorporated nanofibrous membrane. Chemical Engineering Journal, 2018,352:737-744. DOI URL | 
| [19] | EFOME J E, RANA D, MATSUURA T, et al. Metal-organic frameworks supported on nanofibers to remove heavy metals. Journal of Materials Chemistry A, 2018,6(10):4550-4555. DOI URL | 
| [20] | SHOOTO N D, WANKASI D, SIKHWVHILU C, et al. Novel super adsorbents (PVA and PVA/Cu-MOF nanofibres) as effective lead ions remover in aqueous solution. Dig. J. Nanomater. Biostruct., 2016,11:425-434. | 
| [21] | SHOOTO N D, DIKIO C W, WANKASI D, et al. Novel PVA/MOF nanofibres: fabrication, evaluation and adsorption of lead ions from aqueous solution. Nanoscale Research Letters, 2016,11(1):1-13. DOI URL | 
| [22] | WANG C, ZHENG T, LUO R, et al. In situ growth of ZIF-8 on PAN fibrous filters for highly efficient U(VI) removal. ACS Applied Materials & Interfaces, 2018,10(28):24164-24171. | 
| [23] | LU A X, PLOSKONKA A M, TOVAR T M, et al. Direct surface growth of UIO-66-NH2 on polyacrylonitrile nanofibers for efficient toxic chemical removal. Industrial & Engineering Chemistry Research, 2017,56(49):14502-14506. DOI URL | 
| [24] | LI Z, ZHOU G, DAI H, et al. Biomineralization-mimetic preparation of hybrid membranes with ultra-high loading of pristine metal-organic frameworks grown on silk nanofibers for hazard collection in water. Journal of Materials Chemistry A, 2018,6(8):3402-3413. DOI URL | 
| [25] | LIU C, WU Y N, MORLAY C, et al. General deposition of metal-organic frameworks on highly adaptive organic-inorganic hybrid electrospun fibrous substrates. ACS Applied Materials & Interfaces, 2016,8(4):2552-2561. | 
| [26] | GAO M, ZENG L, NIE J, et al. Polymer-metal-organic framework core-shell framework nanofibers via electrospinning and their gas adsorption activities. RSC Advances, 2016,6(9):7078-7085. DOI URL | 
| [27] | WU Y N, LI F, LIU H, et al. Electrospun fibrous mats as skeletons to produce free-standing MOF[ membranes. Journal of Materials Chemistry, 2012,22(33):16971-16978. DOI URL | 
| [28] | BECHELANY M, DROBEK M, VALLICARI C, et al. Highly crystalline MOF-based materials grown on electrospun nanofibers. Nanoscale, 2015,7(13):5794-5802. DOI URL | 
| [29] | DWYER D B, LEE D T, BOYER S, et al. Toxic organophosphate hydrolysis using nanofiber-templated UIO-66-NH2 metal-organic framework polycrystalline cylinders. ACS Applied Materials & Interfaces, 2018,10(30):25794-25803. | 
| [30] | ZHOU M, LI J, ZHANG M, et al. A polydopamine layer as the nucleation center of MOF deposition on “inert” polymer surfaces to fabricate hierarchically structured porous films. Chemical Communications, 2015,51(13):2706-2709. DOI URL | 
| [31] | FAN L, XUE M, KANG Z, et al. Electrospinning technology applied in zeolitic imidazolate framework membrane synthesis. Journal of Materials Chemistry, 2012,22(48):25272-25276. DOI URL | 
| [32] | ARMSTRONG M, SIROU P, SHAN B, et al. Prolonged HKUST-1 functionality under extreme hydrothermal conditions by electrospinning polystyrene fibers as a new coating method. Microporous and Mesoporous Materials, 2018,270:34-39. DOI URL | 
| [33] | CHOI C, KADAM R L, GAILWAD S, et al. Metal organic frameworks immobilized polyacrylonitrile fiber mats with polyethyleneimine impregnation for CO2 capture. Microporous and Mesoporous Materials, 2020,296:110006. DOI URL | 
| [34] | FAN X, YU L, LI L, et al. Characterization and application of zeolitic imidazolate framework-8@polyvinyl alcohol nanofibers mats prepared by electrospinning. Materials Research Express, 2017,4(2):026404. DOI URL | 
| [35] | ZHAN Y, GUAN X, REN E, et al. Fabrication of zeolitic imidazolate framework-8 functional polyacrylonitrile nanofibrous mats for dye removal. Journal of Polymer Research, 2019,26(6):145. DOI URL | 
| [36] | ZHAO R, TIAN Y, LI S, et al. An electrospun fiber based metal-organic framework composite membrane for fast, continuous, and simultaneous removal of insoluble and soluble contaminants from water. Journal of Materials Chemistry A, 2019,7(39):22559-22570. DOI URL | 
| [37] | LI T, LIU L, ZHANG Z, et al. Preparation of nanofibrous metal-organic framework filter for rapid adsorption and selective separation of cationic dye from aqueous solution. Separation and Purification Technology, 2020,237:116360. | 
| [38] | JAMSHIDIFARD S, KOUSHKBAGHI S, HOSSEINI S, et al. Incorporation of UIO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(II), Cd(II) and Cr(VI) ions from aqueous solutions. Journal of Hazardous Materials, 2019,368:10-20. DOI URL | 
| [39] | HOU X, ZHOU H, ZHANG J, et al. High adsorption pearl-necklace-like composite membrane based on metal-organic framework for heavy metal ion removal. Particle & Particle Systems Characterization, 2018,35(6):1700438. | 
| [40] | LEUS K, KRISHNARAJ C, VERHOEVEN L, et al. Catalytic carpets: Pt@MIL-101@electrospun PCL, a surprisingly active and robust hydrogenation catalyst. Journal of Catalysis, 2018,360:81-88. DOI URL | 
| [41] | DAI X, LI X, ZHANG M, et al. Zeolitic imidazole framework/ graphene oxide hybrid functionalized poly (lactic acid) electrospun membranes: A promising environmentally friendly water treatment material. ACS Omega, 2018,3(6):6860-6866. DOI URL | 
| [42] | LU A X, MCENTEE M, BROWE M A, et al. Mofabric: electrospun nanofiber mats from PVDF/UIO-66-NH2 for chemical protection and decontamination. ACS Applied Materials & Interfaces, 2017,9(15):13632-13636. | 
| [43] | PETERSON G W, LU A X, EPPS T H. Tuning the morphology and activity of electrospun polystyrene/UIO-66-NH2 metal-organic framework composites to enhance chemical warfare agent removal. ACS Applied Materials & Interfaces, 2017,9(37):32248-32254. | 
| [44] | MCCARTHY D L, LIU J, DWYER D B, et al. Electrospun metal-organic framework polymer composites for the catalytic degradation of methyl paraoxon. New Journal of Chemistry, 2017,41(17):8748-8753. DOI URL | 
| [45] | XU Y, WEN Y, ZHU W, et al. Electrospun nanofibrous mats as skeletons to produce MOF membranes for the detection of explosives. Materials Letters, 2012,87:20-23. DOI URL | 
| [46] | SHANGGUAN J, BAI L, LI Y, et al. Layer-by-layer decoration of nofs on electrospun nanofibers. RSC Advances, 2018,8(19):10509-10515. DOI URL | 
| [47] | LI T T, LIU L, GAO M L, et al. A highly stable nanofibrous Eu-MOF membrane as a convenient fluorescent test paper for rapid and cyclic detection of nitrobenzene. Chemical Communications, 2019,55(34):4941-4944. DOI URL | 
| [48] | ASIABI M, MEHDINIA A, JABBARI A. Preparation of water stable methyl-modified metal-organic framework-5/polyacrylonitrile composite nanofibers via electrospinning and their application for solid-phase extraction of two estrogenic drugs in urine samples. Journal of Chromatography A, 2015,1426:24-32. DOI URL | 
| [49] | ASIABI M, MEHDINIA A, JABBARI A. Electrospun biocompatible chitosan/MIL-101 (Fe) composite nanofibers for solid-phase extraction of Δ9-tetrahydrocannabinol in whole blood samples using box-behnken experimental design. Journal of Chromatography A, 2017,1479:71-80. DOI URL | 
| [50] | LIU F, XU H. Development of a novel polystyrene/metal-organic framework-199 electrospun nanofiber adsorbent for thin film microextraction of aldehydes in human urine. Talanta, 2017,162:261-267. DOI URL | 
| [51] | MEHRAFZA N, SARAZI M. Electrospun polyacrylonitrile-zeolite imidazolate framework-8 nanofibers for the thin-film microextraction of bisphenol A. Separation Science Plus, 2018,1(5):382-388. DOI URL | 
| [52] | YAN Z, WU M, HU B, et al. Electrospun UIO-66/polyacrylonitrile nanofibers as efficient sorbent for pipette tip solid phase extraction of phytohormones in vegetable samples. Journal of Chromatography A, 2018,1542:19-27. DOI URL | 
| [53] | ARABORKHI B, SERESHTI H, ABBASI A. Electrospun metal-organic framework/polyacrylonitrile composite nanofibrous mat as a microsorbent for the extraction of tetracycline residue in human blood plasma. Journal of Separation Science, 2019,42(8):1500-1508. DOI URL | 
| [54] | YANG F, EFOME J E, RANA D, et al. Metal-organic frameworks supported on nanofiber for desalination by direct contact membrane distillation. ACS Applied Materials & Interfaces, 2018,10(13):11251-11260. | 
| [55] | WU B, PAN J, GE L, et al. Oriented MOF-polymer composite nanofiber membranes for high proton conductivity at high temperature and anhydrous condition. Scientific Reports, 2014,4:4334. DOI URL | 
| [56] | KOHSARI I, SHARIATINIA Z, POURMORTAZAVI S M. Antibacterial electrospun chitosan-polyethylene oxide nanocomposite mats containing ZIF-8 nanoparticles. International Journal of Biological Macromolecules, 2016,91:778-788. DOI URL | 
| [57] | SINGBUMRUNG K, MOTINA K, PISITSAK P, et al. Preparation of Cu-BTC/PVA fibers with antibacterial applications. Fibers and Polymers, 2018,19(7):1373-1378. DOI URL | 
| [58] | GUO Y, CAO Y, CHEN Z, et al. Fluorinated metal-organic framework as bifunctional filler toward highly improving output performance of triboelectric nanogenerators. Nano Energy, 2020,70:104517. DOI URL | 
| [1] | 朱文杰, 唐璐, 陆继长, 刘江平, 罗永明. 钙钛矿型氧化物催化氧化挥发性有机化合物的研究进展[J]. 无机材料学报, 2025, 40(7): 735-746. | 
| [2] | 胡智超, 杨鸿宇, 杨鸿程, 孙成礼, 杨俊, 李恩竹. P-V-L键理论在微波介质陶瓷性能调控中的应用[J]. 无机材料学报, 2025, 40(6): 609-626. | 
| [3] | 吴琼, 沈炳林, 张茂华, 姚方周, 邢志鹏, 王轲. 铅基织构压电陶瓷研究进展[J]. 无机材料学报, 2025, 40(6): 563-574. | 
| [4] | 张碧辉, 刘小强, 陈湘明. Ruddlesden-Popper结构杂化非常规铁电体的研究进展[J]. 无机材料学报, 2025, 40(6): 587-608. | 
| [5] | 吴杰, 杨帅, 王明文, 李景雷, 李纯纯, 李飞. 铅基织构压电陶瓷的发展历程、现状与挑战[J]. 无机材料学报, 2025, 40(6): 575-586. | 
| [6] | 姜昆, 李乐天, 郑木鹏, 胡永明, 潘勤学, 吴超峰, 王轲. PZT陶瓷的低温烧结研究进展[J]. 无机材料学报, 2025, 40(6): 627-638. | 
| [7] | 田睿智, 兰正义, 殷杰, 郝南京, 陈航榕, 马明. 基于微流控技术的纳米无机生物材料制备: 原理及其研究进展[J]. 无机材料学报, 2025, 40(4): 337-347. | 
| [8] | 张继国, 吴田, 赵旭, 杨钒, 夏天, 孙士恩. 钠离子电池正极材料循环稳定性提升策略及产业化进程[J]. 无机材料学报, 2025, 40(4): 348-362. | 
| [9] | 殷杰, 耿佳毅, 王康龙, 陈忠明, 刘学建, 黄政仁. SiC陶瓷的3D打印成形与致密化新进展[J]. 无机材料学报, 2025, 40(3): 245-255. | 
| [10] | 谌广昌, 段小明, 朱金荣, 龚情, 蔡德龙, 李宇航, 杨东雷, 陈彪, 李新民, 邓旭东, 余瑾, 刘博雅, 何培刚, 贾德昌, 周玉. 直升机特定结构先进陶瓷材料研究进展与应用展望[J]. 无机材料学报, 2025, 40(3): 225-244. | 
| [11] | 范晓波, 祖梅, 杨向飞, 宋策, 陈晨, 王子, 罗文华, 程海峰. 质子调控型电化学离子突触研究进展[J]. 无机材料学报, 2025, 40(3): 256-270. | 
| [12] | 海热古·吐逊, 郭乐, 丁嘉仪, 周嘉琪, 张学良, 努尔尼沙·阿力甫. 上转换荧光探针辅助的光学成像技术在肿瘤显影中的应用研究进展[J]. 无机材料学报, 2025, 40(2): 145-158. | 
| [13] | 孙树娟, 郑南南, 潘昊坤, 马猛, 陈俊, 黄秀兵. 单原子催化剂制备方法的研究进展[J]. 无机材料学报, 2025, 40(2): 113-127. | 
| [14] | 陶桂龙, 支国伟, 罗添友, 欧阳佩东, 衣新燕, 李国强. 空腔型薄膜体声波滤波器的关键技术进展[J]. 无机材料学报, 2025, 40(2): 128-144. | 
| [15] | 周帆, 田志林, 李斌. 热防护系统用碳化物超高温陶瓷抗烧蚀涂层研究进展[J]. 无机材料学报, 2025, 40(1): 1-16. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||