无机材料学报 ›› 2019, Vol. 34 ›› Issue (8): 899-903.DOI: 10.15541/jim20190013 CSTR: 32189.14.10.15541/jim20190013
程田盛1,2,3,潘炯4,徐鹰鹰1,2,3,鲍群群1,2,3,胡萍1(),施剑林1(
)
收稿日期:
2019-01-06
出版日期:
2019-08-20
网络出版日期:
2019-05-29
作者简介:
CHENG Tian-Sheng (1994-), male, candidate of Master degree. E-mail: chengtsh@shanghaitech.edu.cn
CHENG Tian-Sheng1,2,3,PAN Jiong4,XU Ying-Ying1,2,3,BAO Qun-Qun1,2,3,HU Ping1(),SHI Jian-Lin1(
)
Received:
2019-01-06
Published:
2019-08-20
Online:
2019-05-29
Supported by:
摘要:
锌锰掺杂的Fe3O4纳米颗粒具有优异的磁性能, 在生物医药领域有广泛的应用前景。磁性纳米颗粒的尺寸与其磁学性质以及生物磁性应用密切相关。因此, 为了适应不同生物应用对尺寸的需求, 研究其尺寸调控具有重要的意义。在本研究中, 我们采用高温热分解法, 通过加入还原剂1,2-十六烷二醇, 改变金属前躯体和回流时间成功制备了尺寸在5~20 nm的锌锰掺杂Fe3O4纳米颗粒。研究发现:强还原剂1,2-十六烷二醇的加入有利于合成小尺寸的纳米颗粒, 而以金属氯化物作为金属前躯体和延长回流时间可以进一步合成更大尺寸的纳米颗粒; 纳米颗粒的饱和磁化强度随着尺寸的增大而增大。
中图分类号:
程田盛, 潘炯, 徐鹰鹰, 鲍群群, 胡萍, 施剑林. 锌锰掺杂Fe3O4纳米颗粒的尺寸可控合成[J]. 无机材料学报, 2019, 34(8): 899-903.
CHENG Tian-Sheng, PAN Jiong, XU Ying-Ying, BAO Qun-Qun, HU Ping, SHI Jian-Lin. Synthesis of Zn, Mn doped Fe3O4 Nanoparticles with Tunable Size[J]. Journal of Inorganic Materials, 2019, 34(8): 899-903.
Fig. 1 TEM images of ZnMn-Fe3O4 nanoparticles and histograms of their size distributions obtained by Fe(acac)3, Mn(acac)2 and Zn(acac)2 with (a, c) and without (b, d) adding 1,2-hexadecanediol
Fig. 2 TEM image (a), histograms of their size distributions (b), high-resolution TEM image (c) and selected area electron diffraction (SAED) pattern (d) of 15 nm-sized ZnMn-Fe3O4 nanoparticles prepared from Fe(acac)3, MnCl2 and ZnCl2
Fig. 3 TEM images of 20 nm-sized ZnMn-Fe3O4 nanoparticles synthesized from Fe(acac)3, MnCl2 and ZnCl2 with different reflux time durations of 1.5 h (a) and 2 h (b), and the corresponding histograms of size distributions of 1.5 h (c) and 2 h (d)
Fig. 4 XRD patterns (a), FT-IR spectra (b) and energy dispersive X-ray spectroscopy (EDS) data (c) of 5 nm, 10 nm, 15 nm, and 20 nm-sized ZnMn-Fe3O4 nanoparticles
[1] | NOH S H, NA W, JANG J T , et al. Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Letters, 2012,12(7):3716-3721. |
[2] | DI CORATO R, BEALLE G, KOLOSNJAJ-TABI J , et al. Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes. ACS Nano, 2015,9(3):2904-2916. |
[3] |
NA H B, SONG I C, HYEON T . Inorganic nanoparticles for MRI contrast agents. Advanced Materials, 2009,21(21):2133-2148.
DOI URL |
[4] |
GAO J H, GU H W, XU B . Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Accounts of Chemical Research, 2009,42(8):1097-1107.
DOI URL |
[5] | WAN Y, CHENG G, LIU X , et al. Rapid magnetic isolation of extracellular vesicles via lipid-based nanoprobes. Nature Biomedical Engineering, 2017,1:0058. |
[6] |
LU A H, SALABAS E L, SCHUTH F . Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed., 2007,46(8):1222-1244.
DOI URL |
[7] |
HOCHEPIED J F, PILENI M P . Magnetic properties of mixed cobalt- zinc ferrite nanoparticles. Journal of Applied Physics, 2000,87(5):2472-2478.
DOI URL |
[8] | ARULMURUGAN R, JEYADEVAN B, VAIDYANATHAN G , et al. Effect of zinc substitution on Co-Zn and Mn-Zn ferrite nanoparticles prepared by co-pecipitation. Journal of Magnetism and Magnetic Materials, 2005,288:470-477. |
[9] | JANG J T, NAH H, LEE J H , et al. Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew. Chem. Int. Ed., 2009,48(7):1234-1238. |
[10] | DENG H, LI X, PENG Q , et al. Monodisperse magnetic single- crystal ferrite microspheres. Angew. Chem. Int. Ed., 2005,44(18):2782-2785. |
[11] | WOO K, LEE H J, AHN J P , et al. Sol-Gel mediated synthesis of Fe2O3 nanorods. Advanced Materials, 2003,15(20):1761-1764. |
[12] | WU J H, KO S P, LIU H L , et al. Sub 5 nm magnetite nanoparticles: synthesis, microstructure, and magnetic properties. Materials Letters, 2007,61(14/15):3124-3129. |
[13] |
XIE J, LEE S, CHEN X . Nanoparticle-based theranostic agents . Advanced Drug Delivery Reviews, 2010,62(11):1064-1079.
DOI URL |
[14] | LEE J H, HUH Y M, JUN Y W , et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nature Medicine, 2007,13(1):95-99. |
[15] | SINGH M, RAMANATHAN R, MAYES E L H , et al. One-pot synthesis of maghemite nanocrystals across aqueous and organic solvents for magnetic hyperthermia. Applied Materials Today, 2018,12:250-259. |
[16] | FORTIN J P, WILHELM C, SERVAIS J , et al. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. Journal of the American Chemical Society, 2007,129(9):2628-2635. |
[17] | GU H, XU K, XU C , et al. Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem. Commun., 2006(9):941-949. |
[18] | XU H, AGUILAR Z P, YANG L , et al. Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood. Biomaterials, 2011,32(36):9758-9765. |
[19] | LEE J H, JANG J T, CHOI J S , et al. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nature Nanotechnology, 2011,6(7):418-422. |
[20] | LARTIGUE L, INNOCENTI C, KALAIVANI T , et al. Water- dispersible sugar-coated iron oxide nanoparticles. An evaluation of their relaxometric and magnetic hyperthermia properties. Journal of the American Chemical Society, 2011,133(27):10459-10472. |
[21] | WU L, MENDOZA-GARCIA A, LI Q , et al. Organic phase syntheses of magnetic nanoparticles and their applications. Chemical Reviews, 2016,116(18):10473-10512. |
[22] | SUN S H, ZENG H, ROBINSON D B , et al. Monodisperse MFe2O4(M = Fe, Co, Mn) nanoparticles. Journal of the American Chemical Society, 2004,126(1):273-279. |
[23] | QU Y, LI J, REN J , et al. Enhanced magnetic fluid hyperthermia by micellar magnetic nanoclusters composed of Mn(x)Zn(1-x)Fe, 2014,6(19):16867-16879. |
[24] | RONG C B, LI D, NANDWANA V , et al. Size-dependent chemical and magnetic ordering in L10-FePt nanoparticles. Advanced Materials, 2006,18(22):2984-2988. |
[25] | JUN Y W, HUH Y M, CHOI J S , et al. Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. Journal of the American Chemical Society, 2005,127(16):5732-5733. |
[1] | 晁少飞, 薛艳辉, 吴琼, 伍复发, MUHAMMAD Sufyan Javed, 张伟. MXene异质结Ti-O-H-O电子快速通道促进高效率储钾[J]. 无机材料学报, 2024, 39(11): 1212-1220. |
[2] | 谢天, 宋二红. 弹性应变对C、H、O在过渡金属氧化物表面吸附的影响[J]. 无机材料学报, 2024, 39(11): 1292-1300. |
[3] | 张哲, 孙婷婷, 王连军, 江莞. 不同维度Ag2Se构筑柔性热电薄膜的性能优化与器件集成研究[J]. 无机材料学报, 2024, 39(11): 1221-1227. |
[4] | 任冠源, 李宜冠, 丁冬海, 梁瑞虹, 周志勇. CaBi2Nb2O9铁电薄膜的生长取向调控和性能研究[J]. 无机材料学报, 2024, 39(11): 1228-1234. |
[5] | 陶顺衍, 杨加胜, 邵芳, 吴应辰, 赵华玉, 董绍明, 张翔宇, 熊瑛. 航机CMC热端部件用热喷涂涂层的机遇与挑战[J]. 无机材料学报, 2024, 39(10): 1077-1083. |
[6] | 史瑞, 刘伟, 李林, 李欢, 张志军, 饶光辉, 赵景泰. BaSrGa4O8: Tb3+力致发光材料的制备及性能[J]. 无机材料学报, 2024, 39(10): 1107-1113. |
[7] | 陈梦杰, 王倩倩, 吴成铁, 黄健. 基于DFT的描述符预测生物陶瓷的降解性[J]. 无机材料学报, 2024, 39(10): 1175-1181. |
[8] | 江强, 施立志, 陈政燃, 周志勇, 梁瑞虹. 高于居里温度极化的硬性PZT压电陶瓷的制备及叠层驱动器性能研究[J]. 无机材料学报, 2024, 39(10): 1091-1099. |
[9] | 彭萍, 谭礼涛. CuO掺杂(Ba,Ca)(Ti,Sn)O3陶瓷的结构与压电性能[J]. 无机材料学报, 2024, 39(10): 1100-1106. |
[10] | 王博, 蔡德龙, 朱启帅, 李达鑫, 杨治华, 段小明, 李雅楠, 王轩, 贾德昌, 周玉. SrAl2Si2O8增强BN陶瓷的力学性能及抗热震性能[J]. 无机材料学报, 2024, 39(10): 1182-1188. |
[11] | 瞿牡静, 张淑兰, 朱梦梦, 丁浩杰, 段嘉欣, 代恒龙, 周国红, 李会利. CsPbBr3@MIL-53纳米复合荧光粉的合成、性能及其白光LEDs应用[J]. 无机材料学报, 2024, 39(9): 1035-1043. |
[12] | 王旭, 李翔, 寇华敏, 方伟, 吴庆辉, 苏良碧. 不同浓度Y3+离子掺杂对CaF2晶体性能的影响[J]. 无机材料学报, 2024, 39(9): 1029-1034. |
[13] | 杨佳霖, 王亮君, 阮丝园, 蒋秀林, 杨长. 基于CuI/Si单边异质结的微光高灵敏双波段可切换光电探测器[J]. 无机材料学报, 2024, 39(9): 1063-1069. |
[14] | 荀道祥, 罗序维, 周明冉, 何佳乐, 冉茂进, 胡执一, 李昱. 锂硒电池ZIF-L衍生氮掺杂碳纳米片/碳布自支撑电极的电化学性能研究[J]. 无机材料学报, 2024, 39(9): 1013-1021. |
[15] | 陈甲, 范依然, 闫文馨, 韩颖超. 聚丙烯酸-钙(铈)纳米团簇荧光探针用于无机磷定量检测研究[J]. 无机材料学报, 2024, 39(9): 1053-1062. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||