无机材料学报 ›› 2019, Vol. 34 ›› Issue (8): 885-892.DOI: 10.15541/jim20180514 CSTR: 32189.14.10.15541/jim20180514
张丽艳1,李洪2,胡丽丽1,王亚杰1,3
收稿日期:
2018-10-31
修回日期:
2019-01-07
出版日期:
2019-08-20
网络出版日期:
2019-05-22
作者简介:
张丽艳(1971-), 女, 副研究员. E-mail: jndxzly@hotmail.com
ZHANG Li-Yan1,LI Hong2,HU Li-Li1,WANG Ya-Jie1,3
Received:
2018-10-31
Revised:
2019-01-07
Published:
2019-08-20
Online:
2019-05-22
摘要:
介绍了一种基于玻璃结构性质而建立的玻璃成分(C)-结构(S)-性能(P)的统计模拟方法。分析了常用的成分-性质(C-P)模拟法的局限性以及结构-性质(S-P)模拟法的特点, 并利用磷酸盐激光钕玻璃化学稳定性改良实验比较了C-P与S-P模型的差异, 表明对于组分微调设计, 结构模拟可以给出更好的模拟结果。叙述了C-S-P模型的建模步骤, 通过模拟案例演示了使用C-S与S-P模型反演玻璃成分的具体过程。除常规性质外, C-S-P模拟法还可以对玻璃的光谱激光性质及化学性质等C-P模型难以准确模拟的性质进行预测和模拟。目的是探索一种对玻璃设计普遍适用的, 可以为新型玻璃的研发和玻璃工业生产提供高效、准确设计的便捷模拟方法。
中图分类号:
张丽艳, 李洪, 胡丽丽, 王亚杰. 玻璃成分-结构-性质的“基因结构”模拟法[J]. 无机材料学报, 2019, 34(8): 885-892.
ZHANG Li-Yan, LI Hong, HU Li-Li, WANG Ya-Jie. Structure Modeling of Genes in Glass: Composition-structure-property Approach[J]. Journal of Inorganic Materials, 2019, 34(8): 885-892.
Sample | WL /(mg?cm-2) | nd | n2 /(×10-13, esu) | α300 ℃/(×10-6, K-1) | Tg/℃ |
---|---|---|---|---|---|
BL | 1.29 | 1.50466 | 1.05 | 12.51 | 493.1 |
S1 | 0.89 | 1.50574 | 0.99 | 12.75 | 471.9 |
S2 | 1.07 | 1.50650 | 0.99 | 12.56 | 471.6 |
S3 | 1.30 | 1.50600 | 0.98 | 12.62 | 482.7 |
S4 | 1.11 | 1.50554 | 0.99 | 12.27 | 486.1 |
B1 | 0.65 | 1.50734 | 1.00 | 12.53 | 471.1 |
B2 | 1.04 | 1.50708 | 0.99 | 12.58 | 472.8 |
B3 | 0.67 | 1.50841 | 0.99 | 12.48 | 476.8 |
B4 | 1.11 | 1.50814 | 1.01 | 12.04 | 492.2 |
L1 | 0.79 | 1.50836 | 0.99 | 12.80 | 466.5 |
L2 | 0.70 | 1.51001 | 1.03 | 12.48 | 476.8 |
L3 | 0.65 | 1.51165 | 1.06 | 12.60 | 480.4 |
L4 | 0.69 | 1.51332 | 1.08 | 12.32 | 484.4 |
表1 实验玻璃编号及性质
Table 1 Number of glass samples and their properties
Sample | WL /(mg?cm-2) | nd | n2 /(×10-13, esu) | α300 ℃/(×10-6, K-1) | Tg/℃ |
---|---|---|---|---|---|
BL | 1.29 | 1.50466 | 1.05 | 12.51 | 493.1 |
S1 | 0.89 | 1.50574 | 0.99 | 12.75 | 471.9 |
S2 | 1.07 | 1.50650 | 0.99 | 12.56 | 471.6 |
S3 | 1.30 | 1.50600 | 0.98 | 12.62 | 482.7 |
S4 | 1.11 | 1.50554 | 0.99 | 12.27 | 486.1 |
B1 | 0.65 | 1.50734 | 1.00 | 12.53 | 471.1 |
B2 | 1.04 | 1.50708 | 0.99 | 12.58 | 472.8 |
B3 | 0.67 | 1.50841 | 0.99 | 12.48 | 476.8 |
B4 | 1.11 | 1.50814 | 1.01 | 12.04 | 492.2 |
L1 | 0.79 | 1.50836 | 0.99 | 12.80 | 466.5 |
L2 | 0.70 | 1.51001 | 1.03 | 12.48 | 476.8 |
L3 | 0.65 | 1.51165 | 1.06 | 12.60 | 480.4 |
L4 | 0.69 | 1.51332 | 1.08 | 12.32 | 484.4 |
图1 BL与含SiO2的玻璃拉曼光谱对比(包含测试与拟合谱图对比)及BL拉曼分峰结果细节描述(a~b)为拟合误差, (c)为虚框处的拟合细节
Fig. 1 Raman spectra of BL glass and SiO2 modified glasses, comparing the measured and the simulated spectra (a) along with the corresponding error in detail curve fitting results for BL glass (b), and the fitting detail of gridlines (c) in Fig.1(a)
No. | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | A11 |
---|---|---|---|---|---|---|---|---|---|---|---|
BL | 3.6 | 29.0 | 6.9 | 8.2 | 13.5 | 1.9 | 15.3 | 8.7 | 6.3 | 4.3 | 2.5 |
S1 | 4.4 | 27.6 | 8.1 | 9.2 | 13.1 | 0.0 | 14.2 | 9.1 | 7.7 | 4.3 | 2.4 |
S2 | 3.3 | 36.8 | 6.6 | 6.3 | 14.2 | 0.0 | 12.5 | 9.3 | 5.1 | 4.2 | 1.9 |
S3 | 4.2 | 28.1 | 7.6 | 7.4 | 14.9 | 0.0 | 13.0 | 10.5 | 7.5 | 4.8 | 2.0 |
S4 | 3.4 | 19.2 | 10.4 | 6.8 | 13.0 | 3.1 | 18.8 | 8.0 | 9.3 | 5.2 | 2.7 |
B1 | 3.7 | 27.6 | 7.8 | 7.4 | 13.4 | 2.8 | 12.7 | 10.2 | 5.9 | 7.2 | 1.1 |
B2 | 3.7 | 29.0 | 6.7 | 8.0 | 13.6 | 1.8 | 15.3 | 8.6 | 6.4 | 4.2 | 2.6 |
B3 | 3.6 | 29.1 | 10.7 | 4.6 | 16.3 | 2.8 | 15.4 | 10.8 | 5.1 | 6.9 | 0.9 |
B4 | 3.5 | 28.4 | 8.0 | 3.5 | 16.4 | 2.3 | 17.8 | 7.4 | 5.7 | 5.0 | 1.7 |
L1 | 3.7 | 27.1 | 7.4 | 8.8 | 12.3 | 2.5 | 13.5 | 11.1 | 5.8 | 5.8 | 1.9 |
L2 | 3.7 | 27.4 | 7.4 | 8.5 | 12.3 | 2.4 | 12.8 | 11.5 | 5.7 | 6.5 | 1.7 |
L3 | 3.8 | 27.1 | 7.4 | 9.3 | 11.2 | 2.4 | 16.2 | 10.0 | 6.3 | 4.2 | 2.2 |
L4 | 5.0 | 23.5 | 9.4 | 9.3 | 11.0 | 2.7 | 13.7 | 11.4 | 6.1 | 6.7 | 1.4 |
表2 拉曼光谱分峰拟合后各分峰的积分面积(A=Area)
Table 2 Integral area of Raman bands derived from the Raman curve fitting (A=Area)
No. | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | A11 |
---|---|---|---|---|---|---|---|---|---|---|---|
BL | 3.6 | 29.0 | 6.9 | 8.2 | 13.5 | 1.9 | 15.3 | 8.7 | 6.3 | 4.3 | 2.5 |
S1 | 4.4 | 27.6 | 8.1 | 9.2 | 13.1 | 0.0 | 14.2 | 9.1 | 7.7 | 4.3 | 2.4 |
S2 | 3.3 | 36.8 | 6.6 | 6.3 | 14.2 | 0.0 | 12.5 | 9.3 | 5.1 | 4.2 | 1.9 |
S3 | 4.2 | 28.1 | 7.6 | 7.4 | 14.9 | 0.0 | 13.0 | 10.5 | 7.5 | 4.8 | 2.0 |
S4 | 3.4 | 19.2 | 10.4 | 6.8 | 13.0 | 3.1 | 18.8 | 8.0 | 9.3 | 5.2 | 2.7 |
B1 | 3.7 | 27.6 | 7.8 | 7.4 | 13.4 | 2.8 | 12.7 | 10.2 | 5.9 | 7.2 | 1.1 |
B2 | 3.7 | 29.0 | 6.7 | 8.0 | 13.6 | 1.8 | 15.3 | 8.6 | 6.4 | 4.2 | 2.6 |
B3 | 3.6 | 29.1 | 10.7 | 4.6 | 16.3 | 2.8 | 15.4 | 10.8 | 5.1 | 6.9 | 0.9 |
B4 | 3.5 | 28.4 | 8.0 | 3.5 | 16.4 | 2.3 | 17.8 | 7.4 | 5.7 | 5.0 | 1.7 |
L1 | 3.7 | 27.1 | 7.4 | 8.8 | 12.3 | 2.5 | 13.5 | 11.1 | 5.8 | 5.8 | 1.9 |
L2 | 3.7 | 27.4 | 7.4 | 8.5 | 12.3 | 2.4 | 12.8 | 11.5 | 5.7 | 6.5 | 1.7 |
L3 | 3.8 | 27.1 | 7.4 | 9.3 | 11.2 | 2.4 | 16.2 | 10.0 | 6.3 | 4.2 | 2.2 |
L4 | 5.0 | 23.5 | 9.4 | 9.3 | 11.0 | 2.7 | 13.7 | 11.4 | 6.1 | 6.7 | 1.4 |
n2/(×10-13, esu) | WL/ (mg?cm-2) | Tg/℃ | CTE /(×10-6, K-1) | SiO2/wt% | B2O3/wt% | La2O3 /wt% | RO*/wt% | R2O*/wt% | Al2O3 /wt% | P2O5/wt% | Obj |
---|---|---|---|---|---|---|---|---|---|---|---|
1.029 | 0.90 | 486.9 | 12.18 | 2.16 | 2.81 | 0.91 | 13.59 | 10.74 | 11.58 | 59.17 | 0.99 |
1.023 | 0.92 | 486.7 | 12.28 | 1.93 | 2.96 | 1.08 | 13.61 | 10.77 | 11.60 | 59.27 | 0.99 |
1.027 | 0.88 | 487.0 | 12.26 | 1.89 | 3.04 | 1.27 | 13.59 | 10.74 | 11.58 | 59.15 | 0.98 |
1.024 | 0.94 | 488.0 | 12.21 | 2.05 | 2.97 | 0.89 | 13.60 | 10.75 | 11.59 | 59.21 | 0.98 |
1.027 | 0.90 | 487.4 | 12.22 | 2.19 | 2.95 | 1.08 | 13.57 | 10.73 | 11.56 | 59.09 | 0.98 |
1.027 | 0.93 | 486.0 | 12.28 | 2.03 | 2.78 | 1.21 | 13.62 | 10.77 | 11.60 | 59.30 | 0.98 |
表3 C-S-P模型预测的玻璃成分及相应性质
Table 3 Compositions and properties of the glass predicted by C-S-P model
n2/(×10-13, esu) | WL/ (mg?cm-2) | Tg/℃ | CTE /(×10-6, K-1) | SiO2/wt% | B2O3/wt% | La2O3 /wt% | RO*/wt% | R2O*/wt% | Al2O3 /wt% | P2O5/wt% | Obj |
---|---|---|---|---|---|---|---|---|---|---|---|
1.029 | 0.90 | 486.9 | 12.18 | 2.16 | 2.81 | 0.91 | 13.59 | 10.74 | 11.58 | 59.17 | 0.99 |
1.023 | 0.92 | 486.7 | 12.28 | 1.93 | 2.96 | 1.08 | 13.61 | 10.77 | 11.60 | 59.27 | 0.99 |
1.027 | 0.88 | 487.0 | 12.26 | 1.89 | 3.04 | 1.27 | 13.59 | 10.74 | 11.58 | 59.15 | 0.98 |
1.024 | 0.94 | 488.0 | 12.21 | 2.05 | 2.97 | 0.89 | 13.60 | 10.75 | 11.59 | 59.21 | 0.98 |
1.027 | 0.90 | 487.4 | 12.22 | 2.19 | 2.95 | 1.08 | 13.57 | 10.73 | 11.56 | 59.09 | 0.98 |
1.027 | 0.93 | 486.0 | 12.28 | 2.03 | 2.78 | 1.21 | 13.62 | 10.77 | 11.60 | 59.30 | 0.98 |
Sample | Yb3+ (ICP)/ (×1020, ions?cm-3) | σemi/pm2 | Tg/℃ | Stark splitting |
---|---|---|---|---|
PS0 | 2.40 | 0.50 | 477 | 639 |
PS2 | 2.38 | 0.48 | 441 | 651 |
PS5 | 2.46 | 0.50 | 462 | 769 |
PS10 | 2.32 | 0.53 | 503 | 786 |
PS20 | 2.17 | 0.57 | 509 | 814 |
表4 PS玻璃性质
Table 4 Properties of PS glass
Sample | Yb3+ (ICP)/ (×1020, ions?cm-3) | σemi/pm2 | Tg/℃ | Stark splitting |
---|---|---|---|---|
PS0 | 2.40 | 0.50 | 477 | 639 |
PS2 | 2.38 | 0.48 | 441 | 651 |
PS5 | 2.46 | 0.50 | 462 | 769 |
PS10 | 2.32 | 0.53 | 503 | 786 |
PS20 | 2.17 | 0.57 | 509 | 814 |
图6 设计成分为SiO2=10mol%时对应设计性质(a)和最高模拟意愿对应的P2O5值对应性质(b)的C-P模型图
Fig. 6 Designed results of C-P model (a) Properties with SiO2=10mol%, (b) Properties with P2O5 mol% under the highest aspiration
[1] | ZHAO J C . A perspective on the materials genome initiative. Chinese Journal of Nature, 2014,36(2):89-104. |
[2] | VOLF M . Mathematical approach to glass. Amsterdam: Elsevier Science Publishers, 1988. |
[3] | LI H, DAVIS M J, URRUTI E H . Eye-safe laser glass development at SCHOTT. Proc. of SPIE, 2010,7686(16):1-12. |
[4] |
VIENNA J D . Compositional models of glass/melt properties and their use for glass formulation. Procedia Materials Science, 2014,7:148-155.
DOI URL |
[5] |
LI H, CHERYL R, WATSON J . High-performance glass fiber development for composite applications. International Journal of Applied Glass Science, 2014,5(1):65-81.
DOI URL |
[6] | VIENNA J D, HRMA P R, SCHWEIGER M J , et al . Effect of composition and temperature on the properties of High-Level Waste (HLW) glasses melting above 1200 ℃ (Draft). Office of Scientific & Technical Information Technical Reports, 1996. |
[7] | YAMASHITA H, YOSHINO H, NAGATA K , et al. Nuclear magnetic resonance studies of alkaline earth phosphosilicate and aluminoborosilicate glasses. Journal of Non-Crystalline Solids, 2000,270(1):48-59. |
[8] |
GREAVES G N . EXAFS and the structure of glass. Journal of Non-Crystalline Solids, 1985,71(1):203-217.
DOI URL |
[9] | SEN S, RAKHMATULLIN R, GUBAYDULLIN R , et al. A pulsed EPR study of clustering of Yb3+ ions incorporated in GeO2 glass. Journal of Non-Crystalline Solids , 2004,333(1):22-27. |
[10] | ZHANG L Y, LI H, HU L L . Statistical structure analysis of GeO2 modified Yb 3+: phosphate glasses based on Raman and FT-IR study . Journal of Alloys & Compounds, 2017,698:103-113. |
[11] | LI H, ZHANG L Y, HU L L , et al. Statistical Modeling Approach to Glass Research and Development: Composition-Structure- Property Relationships (Invited). 8th International Symposium on Advanced Glass, Shanghai, China, 2018. |
[12] | CORNELL J A . Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data, 3rd ed. New York: John Wiley and Sons, 2002. |
[13] |
DARROCH J N, WALLER J . Additive and interaction in three-component experiments with mixtures. Biometrika, 1985,72:153-163.
DOI URL |
[14] |
PIEPEL G F, SZYCHOWSKI J M, LOEPPKY J L . Augmenting scheffe linear mixture models with squared and/or crossproduct terms. Journal of Quality Technology, 2002,34(3):297-314.
DOI URL |
[15] | SCHEFFE H . The simplex-centroid design for experiments with mixtures. Journal of the Royal Statistical Society, 1963,25(2):235-263. |
[16] | ZHANG L Y, LI H, HU L L . Statistical approach to modeling relationships of composition-structure-property I: Alkaline earth phosphate glasses. Journal of Alloys & Compounds, 2018,734:163-171. |
[1] | 晁少飞, 薛艳辉, 吴琼, 伍复发, MUHAMMAD Sufyan Javed, 张伟. MXene异质结Ti-O-H-O电子快速通道促进高效率储钾[J]. 无机材料学报, 2024, 39(11): 1212-1220. |
[2] | 谢天, 宋二红. 弹性应变对C、H、O在过渡金属氧化物表面吸附的影响[J]. 无机材料学报, 2024, 39(11): 1292-1300. |
[3] | 张哲, 孙婷婷, 王连军, 江莞. 不同维度Ag2Se构筑柔性热电薄膜的性能优化与器件集成研究[J]. 无机材料学报, 2024, 39(11): 1221-1227. |
[4] | 任冠源, 李宜冠, 丁冬海, 梁瑞虹, 周志勇. CaBi2Nb2O9铁电薄膜的生长取向调控和性能研究[J]. 无机材料学报, 2024, 39(11): 1228-1234. |
[5] | 陶顺衍, 杨加胜, 邵芳, 吴应辰, 赵华玉, 董绍明, 张翔宇, 熊瑛. 航机CMC热端部件用热喷涂涂层的机遇与挑战[J]. 无机材料学报, 2024, 39(10): 1077-1083. |
[6] | 江强, 施立志, 陈政燃, 周志勇, 梁瑞虹. 高于居里温度极化的硬性PZT压电陶瓷的制备及叠层驱动器性能研究[J]. 无机材料学报, 2024, 39(10): 1091-1099. |
[7] | 彭萍, 谭礼涛. CuO掺杂(Ba,Ca)(Ti,Sn)O3陶瓷的结构与压电性能[J]. 无机材料学报, 2024, 39(10): 1100-1106. |
[8] | 王博, 蔡德龙, 朱启帅, 李达鑫, 杨治华, 段小明, 李雅楠, 王轩, 贾德昌, 周玉. SrAl2Si2O8增强BN陶瓷的力学性能及抗热震性能[J]. 无机材料学报, 2024, 39(10): 1182-1188. |
[9] | 史瑞, 刘伟, 李林, 李欢, 张志军, 饶光辉, 赵景泰. BaSrGa4O8: Tb3+力致发光材料的制备及性能[J]. 无机材料学报, 2024, 39(10): 1107-1113. |
[10] | 陈梦杰, 王倩倩, 吴成铁, 黄健. 基于DFT的描述符预测生物陶瓷的降解性[J]. 无机材料学报, 2024, 39(10): 1175-1181. |
[11] | 瞿牡静, 张淑兰, 朱梦梦, 丁浩杰, 段嘉欣, 代恒龙, 周国红, 李会利. CsPbBr3@MIL-53纳米复合荧光粉的合成、性能及其白光LEDs应用[J]. 无机材料学报, 2024, 39(9): 1035-1043. |
[12] | 杨佳霖, 王亮君, 阮丝园, 蒋秀林, 杨长. 基于CuI/Si单边异质结的微光高灵敏双波段可切换光电探测器[J]. 无机材料学报, 2024, 39(9): 1063-1069. |
[13] | 荀道祥, 罗序维, 周明冉, 何佳乐, 冉茂进, 胡执一, 李昱. 锂硒电池ZIF-L衍生氮掺杂碳纳米片/碳布自支撑电极的电化学性能研究[J]. 无机材料学报, 2024, 39(9): 1013-1021. |
[14] | 陈甲, 范依然, 闫文馨, 韩颖超. 聚丙烯酸-钙(铈)纳米团簇荧光探针用于无机磷定量检测研究[J]. 无机材料学报, 2024, 39(9): 1053-1062. |
[15] | 王旭, 李翔, 寇华敏, 方伟, 吴庆辉, 苏良碧. 不同浓度Y3+离子掺杂对CaF2晶体性能的影响[J]. 无机材料学报, 2024, 39(9): 1029-1034. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||