| [1] | MANZ A, GRABER N, WIDMER H.Miniaturized total chemical analysis systems: a novel concept for chemical sensing.Sensors and Actuators B: Chemical, 1990, 1(1): 244-248. | 
																													
																						| [2] | HWANG K, KWON S, JUNG S,et al. Miniaturized bead-beating device to automate full DNA sample preparation processes for gram-positive bacteria. Lab on a chip, 2011,11(21): 3649-3655. | 
																													
																						| [3] | LING B.Research and industrialization of microfluidic chip.Chinese Journal of Analytical Chemistry, 2016, 44(4): 491-499. | 
																													
																						| [4] | DHARMASIRI U, NJOROGE S K, WITEK M A,et al. High- throughput selection, enumeration, electrokinetic manipulation, and molecular profiling of low-abundance circulating tumor cells using a microfluidic system. Analytical Chemistry, 2011, 83(6): 2301-2309. | 
																													
																						| [5] | BWATANGLANG I B, MOHAMMAD F, YUSOF N A.Role of multifunctional nanomaterials in disease diagnosis and therapy.Journal of Chemical and Pharmaceutical Research, 2014, 6(11): 821-844. | 
																													
																						| [6] | ARYA S K, SAHA S, RAMIREZ-VICK J E,et al. Recent advances in ZnO nanostructures and thin films for biosensor applications: review. Analytica Chimica Acta, 2012, 737(15): 1-21. | 
																													
																						| [7] | HAHM J I.Zinc oxide nanomaterials for biomedical fluorescence detection.Journal of Nanoscience & Nanotechnology, 2014, 14(1): 475-486. | 
																													
																						| [8] | FU Y, ZHANG J, LAKOWICZ J R.Photophysical behaviors of single fluorophores localized on zinc oxide nanostructures.International Journal of Molecular Sciences, 2012, 13(9): 12100-12112. | 
																													
																						| [9] | YIN Y, SUN Y, YU M,et al. ZnO nanorod array grown on Ag layer: a highly efficient fluorescence enhancement platform. Scientific Reports, 2015, 5: 8152-8155. | 
																													
																						| [10] | WEN Z, WANG G, LI J,et al. Enhanced photocatalytic properties of mesoporous SnO2 induced by low concentration ZnO doping. Crystal Growth & Design, 2007, 7(9): 1722-1725. | 
																													
																						| [11] | WANG G, CHEN D, LI J,et al. Tunable photocurrent spectrum in well-oriented zinc oxide nanorod arrays with enhanced photocatalytic activity. J. Phys. Chem. C, 2008, 112(24): 8850-8855. | 
																													
																						| [12] | KIM J, LI Z, PARK I.Direct synthesis and integration of functional nanostructures in microfluidic devices.Lab on Chip, 2011, 11(11): 1946-1951. | 
																													
																						| [13] | GUO L, SHI Y, LIU X,et al. Enhanced fluorescence detection of proteins using ZnO nanowires integrated inside microfluidic chips. Biosensors & Bioelectronics, 2017, 99: 368-374. | 
																													
																						| [14] | SHI Y, GUO L, LIU X,et al. Preparation and fluorescence detection property of ZnO nanorods. Micronanoelectronic Technology, 2017, 54(6): 419-425. | 
																													
																						| [15] | LADANOV M, ALGARINAMARIS P, MATTHEWS G,et al. Microfluidic hydrothermal growth of ZnO nanowires over high aspect ratio microstructures. Nanotechnology, 2013, 24(37): 375301-375309. | 
																													
																						| [16] | NAM G H, BAEK S H, PARK I K.Growth of ZnO nanorods on graphite substrate and its application for Schottky diode.Journal of Alloys & Compounds, 2014, 613(10): 37-41. | 
																													
																						| [17] | SCHMIDT-MENDE L, MACMANUS-DRISCOLL J L. ZnO- nanostructures, defects, and devices.Materials Today, 2007, 10(5): 40-48. | 
																													
																						| [18] | ZHU S, CHEN X, ZUO F,et al. Controllable synthesis of ZnO nanograss with different morphologies and enhanced performance in dye-sensitized solar cells. Journal of Solid State Chemistry, 2013, 197(1): 69-74. | 
																													
																						| [19] | HAN Z, LI J, HE W, et al. A microfluidic device with integrated ZnO nanowires for photodegradation studies of methylene blue under different conditions. Microelectronic Engineering, 2013, 111(2): 199-203. | 
																													
																						| [20] | XU C, GAO D.Two-stage hydrothermal growth of long ZnO nanowires for efficient TiO2 nanotube-based dye-sensitized solar cells.Journal of Physical Chemistry C, 2012, 116(12): 7236-7241. | 
																													
																						| [21] | RICHARDSON J J, LANGE F F.Controlling low temperature aqueous synthesis of ZnO.Crystal Growth & Design, 2009, 9(6): 2570-2575. | 
																													
																						| [22] | TOPOGLIDIS E, CASS A E G, O'REGAN B,et al. Immobilisation and bioelectrochemistry of proteins on nanoporous TiO2, and ZnO films. Journal of Electroanalytical Chemistry, 2001, 517(1/2): 20-27. | 
																													
																						| [23] | FU Y, ZHANG J, LAKOWICZ J R.Photophysical behaviors of single fluorophores localized on zinc oxide nanostructures.International Journal of Molecular Sciences, 2012, 13(9): 12100-12112. | 
																													
																						| [24] | BÖRNER S, RÜTER C E, VOSS T,et al. Modeling of ZnO nanorods for evanescent field optical sensors. Physica Status Solidi, 2007, 204(10): 3487-3495. |