无机材料学报 ›› 2014, Vol. 29 ›› Issue (8): 880-884.DOI: 10.15541/ji.m.2013.0629 CSTR: 32189.14.10.15541/ji.m.2013.0629
李 娟1,2,3, 吴 浩4, 陈拥军2, 徐盛明1
收稿日期:
2013-12-03
修回日期:
2014-02-24
出版日期:
2014-08-20
网络出版日期:
2014-07-15
基金资助:
LI Juan1,2,3, WU Hao4, CHEN Yong-Jun2, XU Sheng-Ming1
Received:
2013-12-03
Revised:
2014-02-24
Published:
2014-08-20
Online:
2014-07-15
摘要:
将无定形硼粉于流动氨气(50 mL/min)和不同氧气流量(10、15、20、40 mL/min)的混合气氛下高温(1300℃)处理后, 在不锈钢基片上收集到白色棉花状产物。研究结果表明, 微量的氧气可将硼粉氧化成气态的B2O2中间体, 为BN纳米管的生长提供活性较高的硼源。当氧气流量适中时, 所得纳米管的平均直径为80 nm, 长度可达几百微米。氧气流量对BN纳米管的直径和产量影响较大, 纳米管直径随着氧气流量的增大而增大, 产量则出现先升高后降低的趋势。氮化硼纳米管的生长机理属于气-液-固模型。
中图分类号:
李 娟, 吴 浩, 陈拥军, 徐盛明. 氧气辅助法制备氮化硼纳米管[J]. 无机材料学报, 2014, 29(8): 880-884.
LI Juan, WU Hao, CHEN Yong-Jun, XU Sheng-Ming. Oxygen Gas-assisted Synthesis of Boron Nitride Nanotubes[J]. Journal of Inorganic Materials, 2014, 29(8): 880-884.
图2 在氧气流量为10 mL/min、反应温度为1300℃下产物的低倍(a)和高倍(b) SEM照片
Fig. 2 Low- (a) and high- (b) magnification SEM images of the product synthesized at 1300℃ and oxygen flow of 10 mL/ min. Inset is the high-magnification image of a particle attached at the end of the 1 D nanostructure
图3 BN纳米管TEM照片(a)(插图为头部带有颗粒的BN纳米管的TEM照片)和管壁的HRTEM照片(b)及其相应的EDX图谱(c, d)
Fig. 3 TEM image (inset TEM image showing a particle attached at the end of a BN nanotube) (a) and HRTEM image (b) of BN nanotube wall, and their EDX patterns (c,d), respectively
图5 1300℃不同氧气流量下所得BN纳米管的低倍和高倍SEM照片
Fig. 5 Low- and high-magnification SEM images of BN nanotubes synthesized at 1300℃ and different flow rates of oxygen (a) and (b): 15 mL/min; (c) and (d) : 20 mL/min; (e) and (f): 40 mL/min
[1] | CHOPRA N G, LUYKEN R J, Cherrey K, et al. Boron nitride nanotubes. Science, 1995, 269(5226): 966-967. |
[2] | SURYAVANSHI A P, YU M F, WEN J G, et al. Elastic modulus and resonance behavior of boron nitride nanotubes. Appl. Phys. Lett., 2004, 84(14): 2527-2529. |
[3] | OKU T, NARITA I. Calculation of H2 gas storage for boron nitride and carbon nanotubes studied from the cluster calculation. Physica B, 2002, 323(2): 216-218. |
[4] | GOLBERG D, BANDO Y, TANG C C, et al. Boron nitride nanotubes. Adv. Mater., 2007, 19(18): 2413-2432. |
[5] | LOISEAU A, WILLAIME F, DEMONCY N, et al. Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge. Phys. Rev. Lett., 1996, 76(25): 4737-4740. |
[6] | GOLBERG D, BANDO Y, EREMETS M. Nanotubes in boron nitride laser heated at high pressure. Appl. Phys. Lett. 1996, 69(14): 2045-2047. |
[7] | YU J, CHEN Y, WUHRER R. In situ formation of BN nanotubes during nitriding reactions. Chem. Mater. 2005, 17(21): 5172-5176. |
[8] | HAN W Q, MICKELSON W, CUMINGS J, et al. Transformation of BxCyNz nanotubes to pure BN nanotubes. Appl. Phys. Lett., 2002, 81(6): 1110-l112. |
[9] | XU L Q, PENG X Y, MENG Z Y, et al.A co-pyrolysis method to boron nitride nanotubes at relative low temperature. Chem. Mater.,2003, 15(13): 2675-2680. |
[10] | LIURI O R, JONES C R, BARTLETT B M, et al. CVD growth of boron nitride nanotubes. Chem. Mater., 2000, 12(7): l808-1810. |
[11] | SOLOZHENKO V L, LAZARENKO A G, PETITET J P, et al. Bandgap energy of graphite-like hexagonal boron nitride. J. Phys. Chem. Solids, 2001, 62(7): 1331-1334. |
[12] | WANG Y, HERRON N. Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem., 1991, 95(2): 525-532. |
[13] | HAN W Q, YU H G, ZHI C Y, et al. Isotope effect on band gap and radiative transitions properties of boron nitride nanotubes. Nano Lett., 2008, 8(2): 491-494. |
[14] | CHEN Z G, ZOU J, LIU G, et al. Long wavelength emissions of periodic yard-glass shaped boron nitride nanotubes. Appl. Phys. Lett. , 2009, 94(2): 023105-1-3. |
[15] | ZHU Y C, BANDO Y, XUE D F, et al. New boron nitride whiskers: showing strong ultraviolet and visible light luminescence. J. Phys. Chem. B, 2004, 108(20): 6193-6196. |
[16] | MO L B, CHEN Y J, LUO L J. Solid-state reaction synthesis of boron carbonitride nanotubes. Appl. Phys.A, 2010, 100(1): 129-134. |
[17] | LI J, LIN H, CHEN Y J.et al. The effect of iron oxide on the formation of boron nitride nanotubes. Chem. Eng. J., 2011, 174(3): 687-692. |
[18] | WILSON P R, CHEN Z. Characterization of surface grain boundary precipitates formed during annealing of low carbon steel sheets. Scr. Mater., 2005, 53(1): l19-l23. |
[19] | CHEN Y J, BO C, DENISE C M, et al. An effective approach to grow boron nitride nanowires directly on stainless-steel substrates. Nanotechnology, 2006, 17(12): 2942-2946. |
[20] | KIM N S, LEE Y T, PARK J, et al. Dependence of the vertically aligned growth of carbon nanotubes on the catalysts. J. Phys. Chem. B, 2002, 106(36): 9286-9290. |
[1] | 王晓波, 朱于良, 薛稳超, 史汝川, 骆柏锋, 罗骋韬. PT含量变化对PMN-PT单晶的大功率性能影响[J]. 无机材料学报, 2025, 40(7): 840-846. |
[2] | 汤新丽, 丁自友, 陈俊锐, 赵刚, 韩颖超. 基于稀土铕离子荧光标记的磷酸钙纳米材料体内分布与代谢研究[J]. 无机材料学报, 2025, 40(7): 754-764. |
[3] | 余乐洋阳, 赵芳霞, 张舒心, 徐以祥, 牛亚然, 张振忠, 郑学斌. 感应等离子球化技术制备喷涂用高熵硼化物粉体[J]. 无机材料学报, 2025, 40(7): 808-816. |
[4] | 杨光, 张楠, 陈舒锦, 王义, 谢安, 严育杰. 基于多孔ITO电极的WO3薄膜的制备及其电致变色性能[J]. 无机材料学报, 2025, 40(7): 781-789. |
[5] | 孙晶, 李翔, 毛小建, 章健, 王士维. 月桂酸改性剂对氮化铝粉体抗水解性能的影响[J]. 无机材料学报, 2025, 40(7): 826-832. |
[6] | 柴润宇, 张镇, 王孟龙, 夏长荣. 直接组装法制备氧化铈基金属支撑固体氧化物燃料电池[J]. 无机材料学报, 2025, 40(7): 765-771. |
[7] | 王鲁杰, 张玉新, 李彤阳, 于源, 任鹏伟, 王建章, 汤华国, 姚秀敏, 黄毅华, 刘学建, 乔竹辉. 深海服役环境下碳化硅陶瓷材料的腐蚀及磨损行为[J]. 无机材料学报, 2025, 40(7): 799-807. |
[8] | 李文元, 徐佳楠, 邓瀚澳, 常爱民, 张博. 钒取代对LaTaO4陶瓷微观结构和微波介电性能的影响[J]. 无机材料学报, 2025, 40(6): 697-703. |
[9] | 胡智超, 杨鸿宇, 杨鸿程, 孙成礼, 杨俊, 李恩竹. P-V-L键理论在微波介质陶瓷性能调控中的应用[J]. 无机材料学报, 2025, 40(6): 609-626. |
[10] | 董晨雨, 郑维杰, 马一帆, 郑春艳, 温峥. 压电力显微镜表征Pb(Mg,Nb)O3-PbTiO3超薄膜弛豫特性[J]. 无机材料学报, 2025, 40(6): 675-682. |
[11] | 何国强, 张恺恒, 王震涛, 包健, 席兆琛, 方振, 王昌昊, 王威, 王鑫, 姜佳沛, 李祥坤, 周迪. Ba(Nd1/2Nb1/2)O3: 一种被低估的K40微波介质陶瓷[J]. 无机材料学报, 2025, 40(6): 639-646. |
[12] | 张家维, 陈宁, 程原, 王博, 朱建国, 金城. Bi4Ti3O12铋层状压电陶瓷的A/B位掺杂及其电学性能[J]. 无机材料学报, 2025, 40(6): 690-696. |
[13] | 崔宁, 张玉新, 王鲁杰, 李彤阳, 于源, 汤华国, 乔竹辉. (TiVNbMoW)Cx高熵陶瓷的单相形成过程与碳空位调控[J]. 无机材料学报, 2025, 40(5): 511-520. |
[14] | 熊思宇, 莫尘, 朱肖伟, 朱国斌, 陈德钦, 刘来君, 施晓东, 李纯纯. 超低介电常数LiBxAl1-xSi2O6微波介质陶瓷的低温烧结[J]. 无机材料学报, 2025, 40(5): 536-544. |
[15] | 安然, 林锶, 郭世刚, 张冲, 祝顺, 韩颖超. 铁掺杂纳米羟基磷灰石的制备及紫外吸收性能研究[J]. 无机材料学报, 2025, 40(5): 457-465. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||