无机材料学报 ›› 2014, Vol. 29 ›› Issue (8): 880-884.DOI: 10.15541/ji.m.2013.0629 CSTR: 32189.14.10.15541/ji.m.2013.0629
李 娟1,2,3, 吴 浩4, 陈拥军2, 徐盛明1
收稿日期:
2013-12-03
修回日期:
2014-02-24
出版日期:
2014-08-20
网络出版日期:
2014-07-15
基金资助:
LI Juan1,2,3, WU Hao4, CHEN Yong-Jun2, XU Sheng-Ming1
Received:
2013-12-03
Revised:
2014-02-24
Published:
2014-08-20
Online:
2014-07-15
摘要:
将无定形硼粉于流动氨气(50 mL/min)和不同氧气流量(10、15、20、40 mL/min)的混合气氛下高温(1300℃)处理后, 在不锈钢基片上收集到白色棉花状产物。研究结果表明, 微量的氧气可将硼粉氧化成气态的B2O2中间体, 为BN纳米管的生长提供活性较高的硼源。当氧气流量适中时, 所得纳米管的平均直径为80 nm, 长度可达几百微米。氧气流量对BN纳米管的直径和产量影响较大, 纳米管直径随着氧气流量的增大而增大, 产量则出现先升高后降低的趋势。氮化硼纳米管的生长机理属于气-液-固模型。
中图分类号:
李 娟, 吴 浩, 陈拥军, 徐盛明. 氧气辅助法制备氮化硼纳米管[J]. 无机材料学报, 2014, 29(8): 880-884.
LI Juan, WU Hao, CHEN Yong-Jun, XU Sheng-Ming. Oxygen Gas-assisted Synthesis of Boron Nitride Nanotubes[J]. Journal of Inorganic Materials, 2014, 29(8): 880-884.
图2 在氧气流量为10 mL/min、反应温度为1300℃下产物的低倍(a)和高倍(b) SEM照片
Fig. 2 Low- (a) and high- (b) magnification SEM images of the product synthesized at 1300℃ and oxygen flow of 10 mL/ min. Inset is the high-magnification image of a particle attached at the end of the 1 D nanostructure
图3 BN纳米管TEM照片(a)(插图为头部带有颗粒的BN纳米管的TEM照片)和管壁的HRTEM照片(b)及其相应的EDX图谱(c, d)
Fig. 3 TEM image (inset TEM image showing a particle attached at the end of a BN nanotube) (a) and HRTEM image (b) of BN nanotube wall, and their EDX patterns (c,d), respectively
图5 1300℃不同氧气流量下所得BN纳米管的低倍和高倍SEM照片
Fig. 5 Low- and high-magnification SEM images of BN nanotubes synthesized at 1300℃ and different flow rates of oxygen (a) and (b): 15 mL/min; (c) and (d) : 20 mL/min; (e) and (f): 40 mL/min
[1] | CHOPRA N G, LUYKEN R J, Cherrey K, et al. Boron nitride nanotubes. Science, 1995, 269(5226): 966-967. |
[2] | SURYAVANSHI A P, YU M F, WEN J G, et al. Elastic modulus and resonance behavior of boron nitride nanotubes. Appl. Phys. Lett., 2004, 84(14): 2527-2529. |
[3] | OKU T, NARITA I. Calculation of H2 gas storage for boron nitride and carbon nanotubes studied from the cluster calculation. Physica B, 2002, 323(2): 216-218. |
[4] | GOLBERG D, BANDO Y, TANG C C, et al. Boron nitride nanotubes. Adv. Mater., 2007, 19(18): 2413-2432. |
[5] | LOISEAU A, WILLAIME F, DEMONCY N, et al. Boron nitride nanotubes with reduced numbers of layers synthesized by arc discharge. Phys. Rev. Lett., 1996, 76(25): 4737-4740. |
[6] | GOLBERG D, BANDO Y, EREMETS M. Nanotubes in boron nitride laser heated at high pressure. Appl. Phys. Lett. 1996, 69(14): 2045-2047. |
[7] | YU J, CHEN Y, WUHRER R. In situ formation of BN nanotubes during nitriding reactions. Chem. Mater. 2005, 17(21): 5172-5176. |
[8] | HAN W Q, MICKELSON W, CUMINGS J, et al. Transformation of BxCyNz nanotubes to pure BN nanotubes. Appl. Phys. Lett., 2002, 81(6): 1110-l112. |
[9] | XU L Q, PENG X Y, MENG Z Y, et al.A co-pyrolysis method to boron nitride nanotubes at relative low temperature. Chem. Mater.,2003, 15(13): 2675-2680. |
[10] | LIURI O R, JONES C R, BARTLETT B M, et al. CVD growth of boron nitride nanotubes. Chem. Mater., 2000, 12(7): l808-1810. |
[11] | SOLOZHENKO V L, LAZARENKO A G, PETITET J P, et al. Bandgap energy of graphite-like hexagonal boron nitride. J. Phys. Chem. Solids, 2001, 62(7): 1331-1334. |
[12] | WANG Y, HERRON N. Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem., 1991, 95(2): 525-532. |
[13] | HAN W Q, YU H G, ZHI C Y, et al. Isotope effect on band gap and radiative transitions properties of boron nitride nanotubes. Nano Lett., 2008, 8(2): 491-494. |
[14] | CHEN Z G, ZOU J, LIU G, et al. Long wavelength emissions of periodic yard-glass shaped boron nitride nanotubes. Appl. Phys. Lett. , 2009, 94(2): 023105-1-3. |
[15] | ZHU Y C, BANDO Y, XUE D F, et al. New boron nitride whiskers: showing strong ultraviolet and visible light luminescence. J. Phys. Chem. B, 2004, 108(20): 6193-6196. |
[16] | MO L B, CHEN Y J, LUO L J. Solid-state reaction synthesis of boron carbonitride nanotubes. Appl. Phys.A, 2010, 100(1): 129-134. |
[17] | LI J, LIN H, CHEN Y J.et al. The effect of iron oxide on the formation of boron nitride nanotubes. Chem. Eng. J., 2011, 174(3): 687-692. |
[18] | WILSON P R, CHEN Z. Characterization of surface grain boundary precipitates formed during annealing of low carbon steel sheets. Scr. Mater., 2005, 53(1): l19-l23. |
[19] | CHEN Y J, BO C, DENISE C M, et al. An effective approach to grow boron nitride nanowires directly on stainless-steel substrates. Nanotechnology, 2006, 17(12): 2942-2946. |
[20] | KIM N S, LEE Y T, PARK J, et al. Dependence of the vertically aligned growth of carbon nanotubes on the catalysts. J. Phys. Chem. B, 2002, 106(36): 9286-9290. |
[1] | 晁少飞, 薛艳辉, 吴琼, 伍复发, MUHAMMAD Sufyan Javed, 张伟. MXene异质结Ti-O-H-O电子快速通道促进高效率储钾[J]. 无机材料学报, 2024, 39(11): 1212-1220. |
[2] | 任冠源, 李宜冠, 丁冬海, 梁瑞虹, 周志勇. CaBi2Nb2O9铁电薄膜的生长取向调控和性能研究[J]. 无机材料学报, 2024, 39(11): 1228-1234. |
[3] | 谢天, 宋二红. 弹性应变对C、H、O在过渡金属氧化物表面吸附的影响[J]. 无机材料学报, 2024, 39(11): 1292-1300. |
[4] | 张哲, 孙婷婷, 王连军, 江莞. 不同维度Ag2Se构筑柔性热电薄膜的性能优化与器件集成研究[J]. 无机材料学报, 2024, 39(11): 1221-1227. |
[5] | 陶顺衍, 杨加胜, 邵芳, 吴应辰, 赵华玉, 董绍明, 张翔宇, 熊瑛. 航机CMC热端部件用热喷涂涂层的机遇与挑战[J]. 无机材料学报, 2024, 39(10): 1077-1083. |
[6] | 江强, 施立志, 陈政燃, 周志勇, 梁瑞虹. 高于居里温度极化的硬性PZT压电陶瓷的制备及叠层驱动器性能研究[J]. 无机材料学报, 2024, 39(10): 1091-1099. |
[7] | 彭萍, 谭礼涛. CuO掺杂(Ba,Ca)(Ti,Sn)O3陶瓷的结构与压电性能[J]. 无机材料学报, 2024, 39(10): 1100-1106. |
[8] | 王博, 蔡德龙, 朱启帅, 李达鑫, 杨治华, 段小明, 李雅楠, 王轩, 贾德昌, 周玉. SrAl2Si2O8增强BN陶瓷的力学性能及抗热震性能[J]. 无机材料学报, 2024, 39(10): 1182-1188. |
[9] | 史瑞, 刘伟, 李林, 李欢, 张志军, 饶光辉, 赵景泰. BaSrGa4O8: Tb3+力致发光材料的制备及性能[J]. 无机材料学报, 2024, 39(10): 1107-1113. |
[10] | 陈梦杰, 王倩倩, 吴成铁, 黄健. 基于DFT的描述符预测生物陶瓷的降解性[J]. 无机材料学报, 2024, 39(10): 1175-1181. |
[11] | 瞿牡静, 张淑兰, 朱梦梦, 丁浩杰, 段嘉欣, 代恒龙, 周国红, 李会利. CsPbBr3@MIL-53纳米复合荧光粉的合成、性能及其白光LEDs应用[J]. 无机材料学报, 2024, 39(9): 1035-1043. |
[12] | 杨佳霖, 王亮君, 阮丝园, 蒋秀林, 杨长. 基于CuI/Si单边异质结的微光高灵敏双波段可切换光电探测器[J]. 无机材料学报, 2024, 39(9): 1063-1069. |
[13] | 王旭, 李翔, 寇华敏, 方伟, 吴庆辉, 苏良碧. 不同浓度Y3+离子掺杂对CaF2晶体性能的影响[J]. 无机材料学报, 2024, 39(9): 1029-1034. |
[14] | 荀道祥, 罗序维, 周明冉, 何佳乐, 冉茂进, 胡执一, 李昱. 锂硒电池ZIF-L衍生氮掺杂碳纳米片/碳布自支撑电极的电化学性能研究[J]. 无机材料学报, 2024, 39(9): 1013-1021. |
[15] | 陈甲, 范依然, 闫文馨, 韩颖超. 聚丙烯酸-钙(铈)纳米团簇荧光探针用于无机磷定量检测研究[J]. 无机材料学报, 2024, 39(9): 1053-1062. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||