无机材料学报 ›› 2014, Vol. 29 ›› Issue (7): 673-680.DOI: 10.3724/SP.J.1077.2014.13507 CSTR: 32189.14.SP.J.1077.2014.13507
• • 下一篇
王 义, 刘海韬, 程海峰, 王 军
收稿日期:
2013-10-08
修回日期:
2014-01-11
出版日期:
2014-07-20
网络出版日期:
2014-06-20
作者简介:
王 义(1985-), 男, 博士研究生. E-mail:wycfcnudt@163.com
基金资助:
WANG Yi, LIU Hai-Tao, CHENG Hai-Feng, WANG Jun
Received:
2013-10-08
Revised:
2014-01-11
Published:
2014-07-20
Online:
2014-06-20
About author:
WANG Yi. E-mail:wycfcnudt@163.com
Supported by:
摘要:
氧化物/氧化物陶瓷基复合材料(CMCs )具有很多优良的性能, 如高比强度、高比模量、优异的抗氧化性能等, 可应用于航空发动机燃烧室和尾喷管等热端部件。本文概述了氧化物/氧化物CMCs的增强纤维和陶瓷基体, 指出单晶氧化物纤维和莫来石陶瓷基体应用潜力较大; 从改善纤维/基体界面结合程度的角度出发, 综述了从界面相和多孔基体角度提高力学性能的方案; 分析了限制其应用的三个关键问题(缺口敏感度、蠕变容忍度和耐烧蚀性能), 最后对其未来发展进行了展望。
中图分类号:
王 义, 刘海韬, 程海峰, 王 军. 氧化物/氧化物陶瓷基复合材料的研究进展[J]. 无机材料学报, 2014, 29(7): 673-680.
WANG Yi, LIU Hai-Tao, CHENG Hai-Feng, WANG Jun. Research Progress on Oxide/Oxide Ceramic Matrix Composites[J]. Journal of Inorganic Materials, 2014, 29(7): 673-680.
图1 Muf/Mullite CMCs应用实例[5]
Fig. 1 Application examples for Muf/Mullite CMCs[5] Products with complex shape (a), and segmented combustor tiles for the use as thermal protection systems (b)
图2 浆料浸渍-缠绕工艺制备的异形氧化物/氧化物CMCs构件[9]
Fig. 2 Several Oxide/Oxide CMCs with complex shapes prepared by ceramic slurry infiltration and winding process[9] (a) Rotation-symmetric WHIPOX component (protection tube); (b) Winding pattern with variable fiber orientation (computer simulation); (c) Combination of continuous fiber layers and grid-type structures as a result of special winding sequence
图3 氧化物/氧化物CMCs应用实例[9-10]
Fig. 3 Application examples for Oxide/Oxide CMCs[9-10] (a) Combustor inner and outer liners fabricated by ATK-COI ceramics; (b) A lightweight helicopter exhaust duct; (c) Nose cap of DLR’s SHEFEX space vehicle
图4 氧化物/氧化物CMCs的界面相类型以及裂纹扩展模式[2, 35-36]
Fig. 4 Interphase types and crack extending modes of Oxide/Oxide CMCs[2, 35-36] M: Matrix; I: Interphase; F: Fiber
Samples | Interphases | Mechanical properties/MPa | Reference | |
---|---|---|---|---|
Composition | Fabrication | |||
2D-N480/M* | None BN | None CVD | 104 (FS, RT); 322 (FS, RT) | [48] |
2D-N550/M | BN/SiC | CVD | 182 (FS, RT) | [51] |
2D-N720/M | NdPO4 | EPD | 279 (FS, RT); 266 (FS, 1300 ℃); 142 (TS, RT) | [52] |
2D-N720/M | Porous AlPO4 | EPD | 175 (FS, RT); 160 (FS, 1300 ℃-100 h) | [40] |
2D-N720/CAS | None fugitive carbon | None CVD | 21 (FS, RT); 85 (FS, RT) | [53] |
表1 界面相在氧化物/氧化物CMCs中的应用概况
Table 1 Applications of interphases in Oxide/Oxide CMCs
Samples | Interphases | Mechanical properties/MPa | Reference | |
---|---|---|---|---|
Composition | Fabrication | |||
2D-N480/M* | None BN | None CVD | 104 (FS, RT); 322 (FS, RT) | [48] |
2D-N550/M | BN/SiC | CVD | 182 (FS, RT) | [51] |
2D-N720/M | NdPO4 | EPD | 279 (FS, RT); 266 (FS, 1300 ℃); 142 (TS, RT) | [52] |
2D-N720/M | Porous AlPO4 | EPD | 175 (FS, RT); 160 (FS, 1300 ℃-100 h) | [40] |
2D-N720/CAS | None fugitive carbon | None CVD | 21 (FS, RT); 85 (FS, RT) | [53] |
Samples | Fabrication | Mechanical properties/MPa | Reference | |
---|---|---|---|---|
Original | After heat-treatment | |||
2D-N720/(M+A+PDA)* | SI-HP+PIP | 177(FS) | 189(FS )(1200 ℃-100 h) | [6] |
2D-N720/(M+A+PDA) | SI-HP+PIP | 148(TS) | 145(TS )(1200 ℃-1000 h) | [58-59] |
2D-N720/(A+S) | SI-HP+PIP | 175(TS) | 50(TS )(1200 ℃-1000 h) | [59] |
2D-N720/(M+PDA) | CR | 200(TS) | 220(TS )(1200 ℃-1000 h) | [60] |
2D-N720/AS | Sol-Gel | 204(FS) | 180(FS )(1000 ℃-100 h) | [61] |
1D-N720/M | SI-W | 165(FS) | 148(FS )(1250 ℃-400 h) | [7] |
Table 2 Mechanical properties of porous oxide CMCs
Samples | Fabrication | Mechanical properties/MPa | Reference | |
---|---|---|---|---|
Original | After heat-treatment | |||
2D-N720/(M+A+PDA)* | SI-HP+PIP | 177(FS) | 189(FS )(1200 ℃-100 h) | [6] |
2D-N720/(M+A+PDA) | SI-HP+PIP | 148(TS) | 145(TS )(1200 ℃-1000 h) | [58-59] |
2D-N720/(A+S) | SI-HP+PIP | 175(TS) | 50(TS )(1200 ℃-1000 h) | [59] |
2D-N720/(M+PDA) | CR | 200(TS) | 220(TS )(1200 ℃-1000 h) | [60] |
2D-N720/AS | Sol-Gel | 204(FS) | 180(FS )(1000 ℃-100 h) | [61] |
1D-N720/M | SI-W | 165(FS) | 148(FS )(1250 ℃-400 h) | [7] |
[1] | MA QING-SONG, LIU HAI-TAO, PAN YU, et al. Research progress on the application of C/SiC composites in scramjet. Journal of Inorganic Materials, 2013, 28(3): 247-255. |
[2] | NASLAIN R. Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Composites Science and Technology, 2004, 64(2): 155-170. |
[3] | NASLAIN R, GUETTE A, REBILLAT F, et al. Oxidation mecha-n-isms and kinetics of SiC-matrix composites and their constituents. Journal of Materials Science, 2004, 39(24): 7303-7316. |
[4] | MEDVEDOVSKI E. Alumina-mullite ceramics for structural applications. Ceramics International, 2006, 32(4): 369-375. |
[5] | SCHNEIDER H, SCHREUER J, HILDMANN B. Structure and properties of mullite-a review. Journal of the European Ceramic Society, 2008, 28(2): 329-344. |
[6] | HOLMQUIST M G, LANGE F F. Processing and properties of a porous oxide matrix composite reinforced with continuous oxide fibers. Journal of the American Ceramic Society, 2003, 86(10): 1733-1740. |
[7] | KANKA B, SCHNEIDER H. Aluminosilicate fiber/mullite matrix composites with favorable high-temperature properties. Journal of the European Ceramic Society, 2000, 20(5): 619-623. |
[8] | CARELLI E A V, FUJITA H, YANG J Y, et al. Effects of thermal aging on the mechanical properties of a porous-matrix ceramic composite. Journal of the American Ceramic Society, 2002, 85(3): 595-602. |
[9] | KRENKEL W (Eds.). Ceramic Matrix Composites: Fiber Reinforced Ceramics and Their Applications. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008: 205-229. |
[10] | JURF R A, BUTNER S C. Advances in all-oxide CMC. Journal of Engineering for Gas Turbines and Power, 2000, 122(2): 202-205. |
[11] | RUGGLES-WRENN M B, MUSIL S S, MALL S, et al. Creep behavior of NextelTM610/monazite/alumina composite at elevated temperatures. Composites Science and Technology, 2006, 66(13): 2089-2099. |
[12] | CHEN Z F, ZHU X R, LIU Z L, et al. Microstructure and mullitization of aluminosilicate matrix in Nextel 720/aluminosi-licate composites prepared by LPCVI at 550℃. Ceramics International, 2006, 32(6): 687-690. |
[13] | WANG Y, CHENG H F, LIU H T, et al. Effects of sintering temperature on mechanical properties of 3D mullite fiber (ALF FB3) reinforced mullite composites. Ceramics International, 2013, 39(8): 9229-9235. |
[14] | 3M Nextel™ Ceramic Textiles Technical Notebook. 3M Center, 2004. |
[15] | SCHNEIDER H, KOMARNENI S (EDS.). Mullite. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005: 141-156. |
[16] | CHAWLA K K. Interface Engineering in Oxide Fiber/Oxide Matrix Composites. Contract No. N0014-89-J1459, annual report for the period 1992 to 1993. |
[17] | KAUFMANN H, MORTENSEN A. Wetting of Saffil alumina fiber preforms by aluminum at 973 K. Metallurgical Transactions A, 1992, 23A(7): 2071-2073. |
[18] | SCHMÜCKER M, FLUCHT F, MECHNICH P. Degradation of oxide fibers by thermal overload and environmental effects. Materials Science and Engineering A, 2012, 557(15): 10-16. |
[19] | WANG Y, CHENG H F, LIU H T, et al. Microstructure and room temperature mechanical properties of mullite fibers afterheat-treatment at elevated temperatures. Materials Science and Engineering A, 2013, 578(20): 287-293. |
[20] | DASSIOS K G, STEEN M, FILIOU C. Mechanical properties of alumina NextelTM 720 fibres at room and elevated temperatures: tensile bundle testing. Materials Science and Engineering A, 2003, 349(12): 63-72. |
[21] | SCHMÜCKER M, SCHNEIDER H, MAUER T, et al. Kinetics of mullite grain growth in alumino silicate fibers. Journal of the American Ceramic Society, 2005, 88(2): 488-490. |
[22] | DELÉGLISE F, BERGER M H, JEULIN D, et al. Microstructural stability and room temperature mechanical properties of the Nextel 720 fibre. Journal of the European Ceramic Society, 2001, 21(5): 569-580. |
[23] | TOWATA A, HWANG H J, YASUOKA M, et al. Fabrication of fine YAG-particulate-dispersed alumina fiber. Journal of the American Ceramic Society, 1998, 81(9): 2469-2472. |
[24] | TOWATA A, HWANG H J, YASUOKA M, et al. Preparation of polycrystalline YAG/alumina composite fibers and YAG fiber by Sol-Gel method. Composites PartA, 2001, 32(8): 1127-1131. |
[25] | QUISPE-CANCAPA J J, DE ARELLANO-LÓPEZ A R, Martínez- Fernández J. Tensile strength of directionally solidified chromia- doped sapphire. Journal of the European Ceramic Society, 2005, 25(8): 1259-1268. |
[26] | CLAUSS B, GRÜB A, OPPERMANN W. Continuous yttria-stab-ilized zirconia fibers. Advanced Materials, 1996, 8(2): 142-146. |
[27] | MARSHALL D B, LANGE F F, MORGAN P D. High-strength zirconia fibers. Journal of the American Ceramic Society, 1987, 70(8): C-187-C-188. |
[28] | EL-BUAISHI N M, JANKOVIC-CASTVAN I, JOKIC B, et al. Crystallization behavior and sintering of cordierite synthesized by an aqueous Sol-Gel route. Ceramics International, 2012, 38(3): 1835-1841. |
[29] | OCHIAI S, UEDA T, SATO K, et al. Deformation and fracture behavior of an Al2O3/YAG composite from room temperature to 2023 K. Composites Science and Technology, 2001, 61(14): 2117-2128. |
[30] | ARVIND A, KUMAR R, DEO M N, et al. Preparation, structural and thermo-mechanical properties of lithium aluminum silicate glass-ceramics. Ceramics International, 2009, 35(4): 1661-1666. |
[31] | EICHLER K, SOLOW G, OTSCHIK P, et al. BAS (BaO·Al2O3·SiO2)- glasses for high temperature applications. Journal of the European Ceramic Society, 1999, 19(67): 1101-1104. |
[32] | MA W M, WEN L, GUAN R G, et al. Sintering densification, microstructure and transformation behavior of Al2O3/ZrO2(Y2O3) composites. Materials Science and Engineering A, 2008, 477(12): 100-106. |
[33] | JIMÉNEZ-MELENDO M, HANEDA H, NOZAWA H. Ytterbium cation diffusion in yttrium aluminum garnet (YAG)-implications for creep mechanisms. Journal of the American Ceramic Society, 2001, 84(10): 2356-2360. |
[34] | MARTIN E, PETERS P W M, LEGUILLON D, et al. Conditions for matrix crack deflection at an interface in ceramic matrix composites. Materials Science and Engineering A, 1998, 250(2): 291-302. |
[35] | NASLAIN R. The design of the fibre-matrix interfacial zone in ceramic matrix composites. Composites Part A, 1998, 29(9/10): 1145-1155. |
[36] | ZOK F W. Developments in oxide fiber composites. Journal of the American Ceramic Society, 2006, 89(11): 3309-3324. |
[37] | KUO D H, KRIVEN W M, MACKIN T J. Control of interfacial properties through fiber coatings: monazite coatings in oxide-oxide composites. Journal of the American Ceramic Society, 1997, 80(12): 2987-2996. |
[38] | CINIBULK M K. Hexaluminates as a cleavable fiber-matrix interphase: synthesis, texture development, and phase compatibility. Journal of the European Ceramic Society, 2000, 20(5): 569-582. |
[39] | CHAWLA K K. Interface engineering in mullite fiber/mullite matrix composites. Journal of the European Ceramic Society, 2008, 28(2): 447-453. |
[40] | BAO Y H, NICHOLSON P S. AlPO4-coated mullite/alumina fiber reinforced reaction-bonded mullite composites. Journal of the European Ceramic Society, 2008, 28(16): 3041-3048. |
[41] | DAVIS J B, MARSHALL D B, MORGAN P E D. Monazite- containing oxide/oxide composites. Journal of the European Ceramic Society, 2000, 20(5): 583-587. |
[42] | CHAWLA K K, LIU H, JANCZAK-RUSCHC J, et al. Microstr-ucture and properties of monazite (LaPO4) coated saphikon fiber/alumina matrix composites. Journal of the European Ceramic Society, 2000, 20(5): 551-559. |
[43] | REIG P, DEMAZEAU G, NASLAIN R. KMg2AlSi4O12 phyllosi-loxide as a potential interphase material for ceramic-matrix comp-osites. Journal of Materials Science, 1997, 32(16): 4195-4200. |
[44] | CHEN Z C, TAMACHI T, KULKARNI R, et al. Interfacial reaction behavior and thermal stability of barium zirconate-coated alumina fiber/alumina matrix composites. Journal of the European Ceramic Society, 2008, 28(6): 1149-1160. |
[45] | BERTRAND S, DROILLARD C, PAILLER R, et al. TEM structure of (PyC/SiC)n multilayered interphases in SiC/SiC composites. Journal of the European Ceramic Society, 2000, 20(1): 1-13. |
[46] | YU H J, ZHOU X G, ZHANG W, et al. Mechanical properties of 3D KD-I SiCf/SiC composites with engineered fibre-matrix interfaces. Composites Science and Technology, 2011, 71(5): 699-704. |
[47] | BHATT R T, CHEN Y L, MORSCHER G N. Microstructure and tensile properties of BN/SiC coated Hi-Nicalon, and Sylramic SiC fiber preforms. Journal of Materials Science, 2002, 37(18): 3991-3998. |
[48] | SCHMÜCKER M, SCHNEIDER H, CHAWLA K K. Thermal degradation of fiber coatings in mullite-fiber-reinforced mullite composites. Journal of the American Ceramic Society, 1997, 80(8): 2136-2140. |
[49] | CINIBULK M K, PARTHASARATHY T A, KELLER K A, et al. Porous yttrium aluminum garnet fiber coatings for oxide composites. Journal of the American Ceramic Society, 2002, 85(11): 2703-2710. |
[50] | KERANS R J, HAY R S, PARTHASARATHY T A, et al. Interface design for oxidation-resistant ceramic composites. Journal of the American Ceramic Society, 2002, 85(11): 2599-2632. |
[51] | CHAWLA K K, XU Z R, HA J S. Processing, structure, and properties of mullite fiber/mullite matrix composites. Journal of the European Ceramic Society, 1996, 16(2): 293-299. |
[52] | KAYA C, KAYA F, BUTLER E G, et al. Development and characterisation of high-density oxide fibre-reinforced oxide ceramic matrix composites with improved mechanical properties. Journal of the European Ceramic Society, 2009, 29(9): 1631-1639. |
[53] | KELLER K A, MAH T, PARTHASARATHY T A, et al. Fugitive interfacial carbon coatings for oxide/oxide composites. Journal of the American Ceramic Society, 2000, 83(2): 329-336. |
[54] | BOCCACCINI A R, KAYA C, CHAWLA K K. Use of electrophoretic deposition in the processing of fibre reinforced ceramic and glass matrix composites: a review. Composites Part A, 2001, 32(8): 997-1006. |
[55] | STOLL E, MAHR P, KRÜGER H G, et al. Progress in the characterisation of structural oxide/oxide ceramic matrix compo-sites fabricated by electrophoretic deposition (EPD). Advanced Engine-ering Materials, 2006, 8(4): 282-285. |
[56] | GOUSHEGIR S M, GUGLIELMI P O, SILVA J G P D, et al. Fiber-matrix compatibility in an all-oxide ceramic composite with RBAO matrix. Journal of the American Ceramic Society, 2012, 95(1): 159-164. |
[57] | SCHMÜCKER M, MECHNICH P. Improving the microstructural stability of NextelTM 610 alumina fibers embedded in a porous alumina matrix. Journal of the American Ceramic Society, 2010, 93(7): 1888-1890. |
[58] | CARELLI E V A, FUJITA H, YANG J Y, et al. Effects of thermal aging on the mechanical properties of a porous-matrix ceramic composite. Journal of the American Ceramic Society, 2002, 85(3): 595-602. |
[59] | ZOK F W, LEVI C G. Mechanical properties of porous-matrix ceramic composites. Advanced Engineering Materials, 2001, 3(1/2): 15-23. |
[60] | SIMON R A. Progress in processing and performance of porous-matrix oxide/oxide composites. International Journal of Applied Ceramic Technology, 2005, 2(2): 141-149. |
[61] | ANTTI M L, CURZIO E L, WARREN R. Thermal degradation of an oxide fibre (Nextel 720)/aluminosilicates composite. Journal of the European Ceramic Society, 2004, 24(3): 565-578. |
[62] | KRAMB V A, JOHN R, ZAWADA L P. Notched fracture behavior of an oxide/oxide ceramic-matrix composite. Journal of the American Ceramic Society, 1999, 82(11): 3087-3096. |
[63] | RUGGLES-WRENN M B, MALL S, EBER C A, et al. Effects of steam environment on high-temperature mechanical behavior of NextelTM 720/alumina (N720/A) continuous fiber ceramic composite. Composites Part A, 2006, 37(11): 2029-2040. |
[64] | RUGGLES-WRENN M B, BRAUN J C. Effects of steam environment on creep behavior of NextelTM 720/alumina ceramic composite at elevated temperature. Materials Science and Engineering A, 2008, 497(12): 101-110. |
[65] | RUGGLES-WRENN M B, LAFFEY P D. Creep behavior in interlaminar shear of NextelTM 720/alumina ceramic composite at elevated temperature in air and in steam. Composites Science and Technology, 2008, 68(1011): 2260-2266. |
[66] | RUGGLES-WRENN M B, KOUTSOUKOS P, BAEK S S. Effects of environment on creep behavior of two oxide/oxide ceramic- matrix composites at 1200℃. Journal of Materials Science, 2008, 43(20): 6734-6746. |
[67] | RUGGLES-WRENN M B, GENELIN C L. Creep of NextelTM 720/alum-ina-mullite ceramic composite at 1200℃ in air, argon, and steam. Composites Science and Technology, 2009, 69(5): 663-669. |
[68] | MATTONI M A, YANG J Y, LEVI C G, et al. Effects of combustor rig exposure on a porous-matrix oxide composite. International Journal of Applied Ceramic Technology, 2005, 2(2): 133-140. |
[69] | OPILA E J, MYERS D L. Alumina volatility in water vapor at elevated temperatures. Journal of the American Ceramic Society, 2004, 87(9): 1701-1705. |
[70] | CAO X Q, VASSEN R, STOEVER D. Ceramic materials for thermal barrier coatings. Journal of the European Ceramic Society, 2004, 24(1): 1-10. |
[71] | HUA JIA-JIE, ZHANG LI-PENG, LIU ZI-WEI. Progress of research on the failure mechanism of thermal barrier coatings. Journal of Inorganic Materials, 2012, 27(7): 680-686. |
[72] | MECHNICH P, BRAUE W. Air plasma-sprayed Y2O3 coatings for Al2O3/Al2O3 ceramic matrix composites. Journal of the European Ceramic Society, 2013, 33(13/14): 2645-2653. |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 全文心, 余艺平, 方冰, 李伟, 王松. 管状C/SiC复合材料高温空气氧化行为与宏细观建模研究[J]. 无机材料学报, 2024, 39(8): 920-928. |
[5] | 潘建隆, 马官军, 宋乐美, 郇宇, 魏涛. 燃料还原法原位制备高稳定性/催化活性SOFC钴基钙钛矿阳极[J]. 无机材料学报, 2024, 39(8): 911-919. |
[6] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[7] | 何思哲, 王俊舟, 张勇, 费嘉维, 吴爱民, 陈意峰, 李强, 周晟, 黄昊. 高频低损耗的Fe/亚微米FeNi软磁复合材料[J]. 无机材料学报, 2024, 39(8): 871-878. |
[8] | 黄建锋, 梁瑞虹, 周志勇. W/Cr共掺杂对CaBi2Nb2O9陶瓷晶体结构及电学性能的影响[J]. 无机材料学报, 2024, 39(8): 887-894. |
[9] | 赵志翰, 郭鹏, 魏菁, 崔丽, 刘山泽, 张文龙, 陈仁德, 汪爱英. Ti-DLC薄膜压阻性能及载流子输运行为研究[J]. 无机材料学报, 2024, 39(8): 879-886. |
[10] | 范武刚, 曹雄, 周响, 李玲, 赵冠楠, 张兆泉. 8YSZ陶瓷在模拟压水堆水环境中的耐腐蚀性能[J]. 无机材料学报, 2024, 39(7): 803-809. |
[11] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[12] | 叶梓滨, 邹高昌, 吴琪雯, 颜晓敏, 周明扬, 刘江. 阳极支撑型锥管串接式直接碳固体氧化物燃料电池组的制备及性能[J]. 无机材料学报, 2024, 39(7): 819-827. |
[13] | 张育育, 吴轶城, 孙佳, 付前刚. 聚合物转化SiHfCN陶瓷的制备及其吸波性能[J]. 无机材料学报, 2024, 39(6): 681-690. |
[14] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[15] | 孙海洋, 季伟, 王为民, 傅正义. TiB-Ti周期序构复合材料设计、制备及性能研究[J]. 无机材料学报, 2024, 39(6): 662-670. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||