[1] Yang T H, Guo YL, Zhou X C, et al. Preparation of amorphous carbon-coated nano-scale SnO2 and its performance for anode material of lithium ion secondary battery. Journal of Inorganic Materials, 2009, 24(1): 147-151.
[2] Zhang J R, Gao L. Synshesis and characterization of tin oxide nanocrystals for gas sensor application. Journal of Inorganic Materials, 2005, 20(2): 466-469.
[3] Chiu H C, Yeh C S. Hydrothermal synthesis of SnO2 nanoparticles and their gas-sensing of alcohol. J. Phys. Chem. C, 2007, 111(20): 7256-7259.
[4] Kuang Q, Lao C S, Wang Z L, et al. High-sensitivity humidity sensor based on a single SnO2 nanowire. J. Am. Chem. Soc., 2007, 129(19): 6070-6071.
[5] Wang Z L, Pan Z. Junctions and networks of SnO nanoribbons. Adv. Mater., 2002, 14(15): 1029-1032.
[6] Zhang D F, Sun L D, Yin J L, et al. Low-temperature fabrication of highly crystalline SnO2 nanorods. Adv. Mater., 2003, 15(12): 1022-1025.
[7] Dai Z R, Pan Z W, Wang Z L. Growth and structure evolution of novel tin oxide diskettes. J. Am. Chem. Soc., 2002, 124(29): 8673-8680.
[8] Wang Y, Lee J Y, Zeng H C. Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application. Chem. Mater., 2005, 17(15): 3899-3903.
[9] Selvan R K, Perelshtein I, Perkas N, et al. Synthesis of hexagonal-shaped SnO2 nanocrystals and SnO2@C nanocomposites for electrochemical redox supercapacitors. J. Phys. Chem. C, 2008, 112(6): 1825-1830.
[10] Zhong Z, Yin Y, Gates B, et al. Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads. Adv. Mater., 2000, 12(3): 206-209.
[11] Budaka S, Miaoa G X, Ozdemira M, et al. Growth and characterization of single crystalline tin oxide (SnO2) nanowires. J. Cryst. Growth, 2006, 291(2): 405-411.
[12] Hu J, Bando Y, Liu Q, et al. Laser-ablation growth and optical properties of wide and long single-crystal SnO2 ribbons. Adv. Func. Mater., 2003, 13(6): 493-496.
[13] Guo C, Cao M, Hu C. A novel and low-temperature hydrothermal synthesis of SnO2 nanorods. Inorg. Chem. Commun., 2004, 7(7): 929-931.
[14] Yu C L, Yu J C, Wang F, et al. Growth of single-crystalline SnO2 nanocubes via a hydrothermal route. Cryst. Eng. Comm., 2010, 12(2): 341-343.
[15] María J A, Pedro L, Bernardo L, et al. On the use of the reverse micelles synthesis of nanomaterials for lithium-ion batteries. J. Solid. State Electrochem., 2009, 14(10):1749-1753.
[16] Wang Z L, Liu Y, Zhang Z. Handbook of nanophase and nanostructured materials. Berlin: Springer, 2002: 1-28.
[17] Joachim K, Kornelia G, Sabine K. Formation of organically and inorganically passivated CdS nanoparticles in reverse microemulsions. Colloid Polym. Sci., 2010, 288(3): 257-263.
[18] Deng H, Yang S H, Xiao S, et al. Controlled synthesis and upconverted avalanche luminescence of cerium(III) and neodymium(III) orthovanadate nanocrystals with high uniformity of size and shape. J. Am. Chem. Soc., 2008, 130(6): 2032-2040.
[19] Robinson R D, Sadtler B, Demchenko D O, et al. Spontaneous super lattice formation in nanorods through partial cation exchange. Science, 2007, 317(20): 355-358. |