无机材料学报 ›› 2025, Vol. 40 ›› Issue (3): 329-336.DOI: 10.15541/jim20240360 CSTR: 32189.14.10.15541/jim20240360
• 研究快报 • 上一篇
收稿日期:
2024-08-04
修回日期:
2024-10-15
出版日期:
2025-03-20
网络出版日期:
2025-03-12
通讯作者:
舒珂维, 副教授. E-mail: shukw@sust.edu.cn作者简介:
杨舒琪(1999-), 女, 硕士研究生. E-mail: 220811026@sust.edu.cn
YANG Shuqi(), YANG Cunguo, NIU Huizhu, SHI Weiyi, SHU Kewei(
)
Received:
2024-08-04
Revised:
2024-10-15
Published:
2025-03-20
Online:
2025-03-12
Contact:
SHU Kewei, associate professor. E-mail: shukw@sust.edu.cnAbout author:
YANG Shuqi (1999-), female, Master candidate. E-mail: 220811026@sust.edu.cn
Supported by:
摘要:
金属磷化物因具有比其他阳极材料更高的比容量而作为潜在的钠离子电池(SIBs)阳极材料。然而, 其体积膨胀和导电性差, 导致SIBs的容量衰减快, 循环寿命短。因此, 本研究采用高能球磨法制备GeP3, 然后进行二次球磨, 通过引入科琴黑(KB), 合成GeP3/KB复合阳极材料。球磨过程使得GeP3和KB紧密结合, 形成强有力的化学键, 因此GeP3/KB阳极表现出优异的储钠性能。GeP3/KB-600-40样品(第二次球磨速度600 r/min, 球磨时间40 h)在0.05 A·g-1的电流密度下获得了933.41 mAh·g-1的高可逆容量; 在2 A·g-1的高电流密度下循环200次后容量仍保持在314.52 mAh·g-1, 容量保持率为66.6%。本研究表明, 通过高能球磨法制备的合金-碳复合阳极材料, 可以缓解阳极在循环过程中产生的体积膨胀, 增大SIBs容量和改善循环稳定性。
中图分类号:
杨舒琪, 杨存国, 牛慧祝, 石唯一, 舒珂维. GeP3/科琴黑复合材料作为钠离子电池高性能负极材料[J]. 无机材料学报, 2025, 40(3): 329-336.
YANG Shuqi, YANG Cunguo, NIU Huizhu, SHI Weiyi, SHU Kewei. GeP3/Ketjen Black Composite: Preparation via Ball Milling and Performance as Anode Material for Sodium-ion Batteries[J]. Journal of Inorganic Materials, 2025, 40(3): 329-336.
Fig. 1 Characterization of synthetic GeP3/KB (a) Schematic diagram of GeP3/KB synthesis; (b) XRD patterns of GeP3 and GeP3/KB composites; (c) Raman spectra of GeP3 and GeP3/KB composites
Fig. 2 High resolution XPS spectra of GeP3/KB nanocomposites (a) C1s XPS spectrum of GeP3/KB-600-40; (b-d) P2p XPS spectra of (b) GeP3/KB-600-40, (c) GeP3/KB-300-40 and (d) GeP3/KB-500-40. Colorful figures are available on website
Fig. 3 SEM images and EDS mappings of (a-c) GeP3 and (d-i) GeP3/KB-600-40 (a) SEM image of GeP3; (b, c) EDS mappings of P and Ge in GeP3; (d) SEM image of GeP3/KB-600-40; (e-i) EDS mappings of C, O, P and Ge in GeP3/KB-600-40
Fig. 5 Electrochemical performance of GeP3 and GeP3/KB composites (a) Initial and (b) second charge-discharge curves of bare GeP3 and GeP3/KB electrodes; (c) Rate performance of bare GeP3 and GeP3/KB electrodes at 0.05, 0.1, 0.5, 1 and 2 A·g-1; (d) Cycling performance of all electrodes at 2 A·g-1 Colorful figures are available on website
Fig. 6 CV curves of (a) GeP3 and (b) GeP3/KB-600-40, and (c) Nyquist plots of all electrodes with inset showing equivalent circuit Colorful figures are available on website
Fig. S3 (a) Relationship between peak current and scan rate in logarithmic format and (b) capacitance contribution at different scan rates of GeP3/KB-600-40
[1] | ZHANG H, HASA I, PASSERINI S. Beyond insertion for Na-ion batteries: nanostructured alloying and conversion anode materials. Advanced Energy Materials, 2018, 8(17): 40. |
[2] | ZHOU J H, SHI Q T, ULLAH S, et al. Phosphorus-based composites as anode materials for advanced alkali metal ion batteries. Advanced Functional Materials, 2020, 30(49): 19. |
[3] | GUO J Z, GU Z Y, DU M, et al. Emerging characterization techniques for delving polyanion-type cathode materials of sodium-ion batteries. Materials Today, 2023, 66: 221. |
[4] | DU M, DU K D, GUO J Z, et al. Direct reuse of oxide scrap from retired lithium-ion batteries: advanced cathode materials for sodium-ion batteries. Rare Metals, 2023, 42(5): 1603. |
[5] | DING C S, CHEN Z, CAO C X, et al. Advances in Mn-based electrode materials for aqueous sodium-ion batteries. Nano-Micro Letters, 2023, 15(1): 42. |
[6] | CHEN F Z, XU J, WANG S Y, et al. Phosphorus/phosphide-based materials for alkali metal-ion batteries. Advanced Science, 2022, 9(17): 25. |
[7] | FU Y Q, WEI Q L, ZHANG G X, et al. Advanced phosphorus- based materials for lithium/sodium-ion batteries: recent developments and future perspectives. Advanced Energy Materials, 2018, 8(13): 28. |
[8] | WU S M, YANG W, LIU Z T, et al. Organic polymer coating induced multiple heteroatom-doped carbon framework confined Co1-xS@NPSC core-shell hexapod for advanced sodium/potassium ion batteries. Journal of Colloid and Interface Science, 2024, 660: 97. |
[9] | HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: present and future. Chemical Society Reviews, 2017, 46(12): 3529. |
[10] | NAYAK P K, YANG L T, BREHM W, et al. From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angewandte Chemie International Edition, 2018, 57(1): 102. |
[11] | ZENG L C, HUANG L C, ZHU J H, et al. Phosphorus-based materials for high-performance alkaline metal ion batteries: progress and prospect. Small, 2022, 18(39): 26. |
[12] | CHEN L T, LIU Z T, YANG W, et al. Micro-mesoporous cobalt phosphosulfide (Co3S4/CoP/NC) nanowires for ultrahigh rate capacity and ultrastable sodium ion battery. Journal of Colloid and Interface Science, 2024, 666: 416. |
[13] | LIU R, YU L, HE X, et al. Constructing heterointerface of Bi/Bi2S3 with built-in electric field realizes superior sodium-ion storage capability. eScience, 2023, 3(4):100138. |
[14] | WANG L Z, LI Q M, CHEN Z Y, et al. Metal phosphide anodes in sodium-ion batteries: latest applications and progress. Small, 2024, 20(26): 2310426. |
[15] | LIU J F, WANG S T, KRAVCHYK K, et al. SnP nanocrystals as anode materials for Na-ion batteries. Journal of Materials Chemistry A, 2018, 6(23): 10958. |
[16] | LI Q F, YANG D, CHEN H L, et al. Advances in metal phosphides for sodium-ion batteries. SusMat, 2021, 1(3): 359. |
[17] | SONG H, EOM K. Overcoming the unfavorable kinetics of Na3V2(PO4)2F3//SnPx full-cell sodium-ion batteries for high specific energy and energy efficiency. Advanced Functional Materials, 2020, 30(31): 9. |
[18] | LI W W, LI H Q, LU Z J, et al. Layered phosphorus-like GeP5: a promising anode candidate with high initial Coulombic efficiency and large capacity for lithium ion batteries. Energy & Environmental Science, 2015, 8(12): 3629. |
[19] | KIM D, ZHANG K, LIM J M, et al. GeP3 with soft and tunable bonding nature enabling highly reversible alloying with Na ions. Materials Today Energy, 2018, 9: 126. |
[20] | YANG F H, HONG J, HAO J N, et al. Ultrathin few-layer GeP nanosheets via lithiation-assisted chemical exfoliation and their application in sodium storage. Advanced Energy Materials, 2020, 10(14): 8. |
[21] | GU Z Y, WANG X T, HENG Y L, et al. Prospects and perspectives on advanced materials for sodium-ion batteries. Science Bulletin, 2023, 68(20): 2302. |
[22] | SUI S M, XIE H, CHEN B, et al. Highly reversible sodium-ion storage in a bifunctional nanoreactor based on single-atom Mn supported on N-doped carbon over MoS2 nanosheets. Angewandte Chemie International Edition, 2024, 63(43): e202411255. |
[23] | CHANG Q Q, JIN Y H, JIA M, et al. Sulfur-doped CoP@nitrogen-doped porous carbon hollow tube as an advanced anode with excellent cycling stability for sodium-ion batteries. Journal of Colloid and Interface Science, 2020, 575: 61. |
[24] | SHI S S, SUN C L, YIN X P, et al. FeP quantum dots confined in carbon-nanotube-grafted P-doped carbon octahedra for high-rate sodium storage and full-cell applications. Advanced Functional Materials, 2020, 30(10): 9. |
[25] | QI W, ZHAO H H, WU Y, et al. Facile synthesis of layer structured GeP3/C with stable chemical bonding for enhanced lithium-ion storage. Scientific Reports, 2017, 7: 7. |
[26] | ZHAO W X, MA X Q, WANG G Z, et al. Carbon-coated CoP3 nanocomposites as anode materials for high-performance sodium-ion batteries. Applied Surface Science, 2018, 445: 167. |
[27] | LIU J, YAO M, WU A M, et al. Inverse capacity growth and progressive lithiation of SnP-semifilled carbon nanotubes anodes. Applied Surface Science, 2021, 568: 10. |
[28] | ZHANG C F, PARK G, LEE B J, et al. Self-templated formation of fluffy graphene-wrapped Ni5P4 hollow spheres for Li-ion battery anodes with high cycling stability. ACS Applied Materials & Interfaces, 2021, 13(20): 23714. |
[29] | OUYANG L Z, GUO L N, CAI W H, et al. Facile synthesis of Ge@FLG composites by plasma assisted ball milling for lithium ion battery anodes. Journal of Materials Chemistry A, 2014, 2(29): 11280. |
[30] | NAM K H, JEON K J, PARK C M. Layered germanium phosphide-based anodes for high-performance lithium- and sodium-ion batteries. Energy Storage Materials, 2019, 17: 78. |
[31] | WANG T, ZHANG K, PARK M, et al. Highly reversible and rapid sodium storage in GeP3 with Synergistic effect from outside-in optimization. ACS Nano, 2020, 14(4): 4352. |
[32] | WANG R, MO H X, LI S, et al. Influence of conductive additives on the stability of red phosphorus-carbon anodes for sodium-ion batteries. Scientific Reports, 2019, 9: 6. |
[33] | ZHANG Z X, LI S Q, GAO S L, et al. Sn/P@G-CNTs composites as high-performance anode materials for sodium-ion batteries. Electrochimica Acta, 2021, 388: 9. |
[34] | LEE J, KIM K H, KIM H H, et al. NiP2/C nanocomposite as a high performance anode for sodium ion batteries. Electrochimica Acta, 2022, 403: 11. |
[35] | WU X, ZHAO W, WANG H, et al. Enhanced capacity of chemically bonded phosphorus/carbon composite as an anode material for potassium-ion batteries. Journal of Power Sources, 2018, 378: 460. |
[36] | HAGHIGHAT-SHISHAVAN S, NAZARIAN-SAMANI M, NAZARIAN-SAMANI M, et al. Strong, persistent superficial oxidation-assisted chemical bonding of black phosphorus with multiwall carbon nanotubes for high-capacity ultradurable storage of lithium and sodium. Journal of Materials Chemistry A, 2018, 6(21): 10121. |
[37] | BOMMIER C, JI X L. Electrolytes, SEI formation, and binders: a review of nonelectrode factors for sodium-ion battery anodes. Small, 2018, 14(16): 20. |
[38] | LIANG M, XIE H N, CHEN B, et al. High-pressure-field induced synthesis of ultrafine-sized high-entropy compounds with excellent sodium-ion storage. Angewandte Chemie International Edition, 2024, 63(27): 11. |
[39] | ZENG T B A, FENG D, LIU Q, et al. Boosting cyclability performance of GeP anode via in-situ generation of free expansion volume. Journal of Alloys and Compounds, 2021, 883: 9. |
[1] | 朱志杰, 申明远, 吴涛, 李文翠. Cu和Mg协同取代抑制钠离子电池正极材料P2-Na2/3Ni1/3Mn2/3O2的P2-O2相变[J]. 无机材料学报, 2025, 40(2): 184-195. |
[2] | 王琨鹏, 刘兆林, 林存生, 王治宇. 基于低含水量普鲁士蓝正极的准固态钠离子电池[J]. 无机材料学报, 2024, 39(9): 1005-1012. |
[3] | 周靖渝, 李兴宇, 赵晓琳, 王有伟, 宋二红, 刘建军. Ti和Cu掺杂β-NaMnO2正极材料:钠离子电池的倍率和循环性能[J]. 无机材料学报, 2024, 39(12): 1404-1412. |
[4] | 孔剑锋, 黄杰成, 刘兆林, 林存生, 王治宇. 基于DPEPA聚合物凝胶电解质的准固态钠离子电池[J]. 无机材料学报, 2024, 39(12): 1331-1338. |
[5] | 胡梦菲, 黄丽萍, 李贺, 张国军, 吴厚政. 锂/钠离子电池硬碳负极材料的研究进展[J]. 无机材料学报, 2024, 39(1): 32-44. |
[6] | 孔国强, 冷明哲, 周战荣, 夏池, 沈晓芳. Sb掺杂O3型Na0.9Ni0.5Mn0.3Ti0.2O2钠离子电池正极材料[J]. 无机材料学报, 2023, 38(6): 656-662. |
[7] | 赵伟, 徐阳, 万颖杰, 蔡天逊, 穆金潇, 黄富强. 金属氰胺化合物的结构、合成及电化学储能应用[J]. 无机材料学报, 2022, 37(2): 140-151. |
[8] | 王晶, 徐守冬, 卢中华, 赵壮壮, 陈良, 张鼎, 郭春丽. 钠离子电池中空结构CoSe2/C负极材料的制备及储钠性能研究[J]. 无机材料学报, 2022, 37(12): 1344-1350. |
[9] | 张晓君, 李佳乐, 邱吴劼, 杨淼森, 刘建军. 钠离子电池正极材料P2-Nax[Mg0.33Mn0.67]O2的电化学活性研究[J]. 无机材料学报, 2021, 36(6): 623-628. |
[10] | 曾凡鑫, 刘创, 曹余良. 去合金化制备具有高循环稳定性的纳米多孔Sb/MCNT储钠负极材料[J]. 无机材料学报, 2021, 36(11): 1137-1144. |
[11] | 李勇, 何玮鑫, 郑芯月, 于胜兰, 李海同, 黎弘毅, 张蓉, 王雨. 水系钠离子电池普鲁士蓝正极材料的制备与电化学性能研究[J]. 无机材料学报, 2019, 34(4): 365-372. |
[12] | 王武练, 张军, 王秋实, 陈亮, 刘兆平. 高质量水系钠离子电池正极Fe4[Fe(CN)6]3的合成及其电化学性能[J]. 无机材料学报, 2019, 34(12): 1301-1308. |
[13] | 王家虎, 王文馨, 杜鹏, 胡芳东, 姜晓蕾, 杨剑. Na3V2(PO4)2F3@V2O5-x复合材料的制备及储钠性能研究[J]. 无机材料学报, 2019, 34(10): 1097-1102. |
[14] | 卢长健, 朱法权, 阴济光, 张剑波, 于亚伟, 胡秀兰. α-MnO2纳米线的制备及其在锂氧气电池中的应用[J]. 无机材料学报, 2018, 33(9): 1029-1034. |
[15] | 肖娜, 潘洋, 宋云, 吴晓京, 傅正文, 周永宁. 锑硅纳米复合薄膜作为钠离子电池负极材料的电化学行为研究[J]. 无机材料学报, 2018, 33(5): 494-500. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||