无机材料学报 ›› 2025, Vol. 40 ›› Issue (1): 77-83.DOI: 10.15541/jim20240305 CSTR: 32189.14.10.15541/jim20240305
收稿日期:
2024-06-21
修回日期:
2024-07-25
出版日期:
2025-01-20
网络出版日期:
2024-07-26
作者简介:
王月月(1988-), 讲师. E-mail: wangyueyue@tyut.edu.cn
基金资助:
WANG Yueyue(), HUANG Jiahui, KONG Hongxing, LI Huaizhu, YAO Xiaohong
Received:
2024-06-21
Revised:
2024-07-25
Published:
2025-01-20
Online:
2024-07-26
About author:
WANG Yueyue (1988-), lecturer. E-mail: wangyueyue@tyut.edu.cn
Supported by:
摘要:
牙科树脂因美观、安全和容易操作等优势, 已成为目前临床最常用的龋洞填充材料, 但仍存在机械强度较低、抗菌性能不足等问题, 导致使用寿命较短。本研究首先制备了放射状介孔二氧化硅(Radial mesoporous silica, RMS)粉体材料, 再将纳米银载入其多孔孔道中, 得到载银放射状介孔二氧化硅(Ag-RMS)。将Ag-RMS与牙科树脂复合, 研究其含量对牙科树脂抗菌性能、机械性能及其他理化性能的影响。结果表明, Ag-RMS可显著提高牙科树脂抗菌性能, Ag-RMS质量分数为5%时, 对变形链球菌的抗菌率已达99.68%。牙科复合树脂机械强度随Ag-RMS含量增加而逐渐升高, 质量分数为7%时, 复合树脂弯曲强度比树脂基体高28.16%。而且, 添加Ag-RMS不会对牙科树脂的聚合收缩率、单体转化率、光固化深度和表面亲疏水性等产生显著影响。本研究所制备的Ag-RMS可提高牙科树脂的抗菌和机械性能。
中图分类号:
王月月, 黄佳慧, 孔红星, 李怀珠, 姚晓红. 载银放射状介孔二氧化硅的制备及其在牙科树脂中的应用[J]. 无机材料学报, 2025, 40(1): 77-83.
WANG Yueyue, HUANG Jiahui, KONG Hongxing, LI Huaizhu, YAO Xiaohong. Silver Loaded Radial Mesoporous Silica: Preparation and Application in Dental Resins[J]. Journal of Inorganic Materials, 2025, 40(1): 77-83.
Element | O | Si | Ag | Total |
---|---|---|---|---|
Mass fraction/% | 60.44 | 37.59 | 1.97 | 100 |
表1 Ag-RMS的化学组成
Table 1 Chemical composition of Ag-RMS
Element | O | Si | Ag | Total |
---|---|---|---|---|
Mass fraction/% | 60.44 | 37.59 | 1.97 | 100 |
图2 Ag-RMS的XRD图谱(a)、粒度分布(b)、N2吸附-解吸等温线(c)和孔径分布图(d)
Fig. 2 XRD pattern (a), particle size distribution (b), N2 adsorption-desorption isotherm (c), and pore size distribution (d) of Ag-RMS
Sample | Average size/nm | Specific surface area/(m2·g-1) | Cumulative pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|---|
Ag-RMS | 421±181 | 348.15 | 0.43 | 5.15 |
表2 Ag-RMS的粒径、比表面积和孔容孔径
Table 2 Particle size, specific surface area, pore volume and pore size of Ag-RMS
Sample | Average size/nm | Specific surface area/(m2·g-1) | Cumulative pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|---|
Ag-RMS | 421±181 | 348.15 | 0.43 | 5.15 |
图3 树脂基体(a)和含2% (b)、5% (c)、7% (d)Ag-RMS牙科复合树脂的抗菌效果照片
Fig. 3 Photographic antibacterial effect of neat resin matrix (a) and dental composite resins with 2% (b), 5% (c), and 7% (d) Ag-RMS contents
图5 不同含量的Ag-RMS对牙科复合树脂机械性能的影响
Fig. 5 Effect of different contents of Ag-RMS on the mechanical properties of dental composite resins (a) Flexural strength; (b) Flexural modulus; (c) Compressive strength; (d) Vickers microhardness. *: p<0.05, **: p<0.01
图6 不同质量比的Ag-RMS与实心二氧化硅对牙科复合树脂机械性能的影响
Fig. 6 Effect of different mass ratios of Ag-RMS and solid silica on the mechanical properties of dental composite resins (a) Flexural strength; (b) Flexural modulus; (c) Compressive strength; (d) Vickers microhardness. *: p < 0.05, **: p < 0.01, ***: p < 0.001
图7 不同无机填料的牙科复合树脂的聚合收缩率(a)、单体转化率(b)、固化深度(c)和接触角(d) (*: p < 0.05)
Fig. 7 Polymerization shrinkage (a), degree of conversion (b), curing depth (c), and contact angle (d) of dental composite resins with different inorganic fillers (*: p < 0.05)
[1] |
BALHADDAD A A, KANSARA A A, HIDAN D, et al. Toward dental caries: exploring nanoparticle-based platforms and calcium phosphate compounds for dental restorative materials. Bioactive Materials, 2019, 4: 43.
DOI PMID |
[2] | AMINOROAYA A, NEISIANY R E, KHORASANI S N, et al. A review of dental composites: challenges, chemistry aspects, filler influences, and future insights. Composites Part B: Engineering, 2021, 216: 108852. |
[3] | CHO K, RAJAN G, FARRAR P, et al. Dental resin composites: a review on materials to product realizations. Composites Part B-Engineering, 2022, 230: 109495. |
[4] | CHEN H Y, WANG R L, QIAN L, et al. Dental restorative resin composites: modification technologies for the matrix/filler interface. Macromolecular Materials and Engineering, 2018, 303(10): 1800264. |
[5] |
LEZAJA M, VELJOVIC D N, JOKIC B M, et al. Effect of hydroxyapatite spheres, whiskers, and nanoparticles on mechanical properties of a model BisGMA/TEGDMA composite initially and after storage. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2013, 101(8): 1469.
DOI PMID |
[6] | WANG X Y, CAI Q, ZHANG X H, et al. Improved performance of bis-GMA/TEGDMA dental composites by net-like structures formed from SiO2 nanofiber fillers. Materials Science and Engineering: C, 2016, 59: 464. |
[7] | CHEN H Y, WANG R L, QIAN L, et al. Surface modification of urchin-like serried hydroxyapatite with Sol-Gel method and its application in dental composites. Composites Part B-Engineering, 2020, 182: 107621. |
[8] | CHEN H Y, WEI S Q, WANG R L, et al. Improving the physical- mechanical property of dental composites by grafting methacrylate- polyhedral oligomeric silsesquioxane onto a filler surface. ACS Biomaterials Science & Engineering, 2021, 7(4): 1428. |
[9] | CHEN H Y, WANG J J, YIN S, et al. Micromechanical interlocking- inspired dendritic porous silica-based multimodal resin composites for the tooth restoration. Nano Research, 2024, 17: 9065. |
[10] |
ZHANG S N, WANG X, YANG J W, et al. Micromechanical interlocking structure at the filler/resin interface for dental composites: a review. International Journal of Oral Science, 2023, 15(1): 21.
DOI PMID |
[11] | KONG H X, BAI X X, LI H Z, et al. Preparation of Ca doped wrinkled porous silica (Ca-WPS) for the improvement of apatite formation and mechanical properties of dental resins. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 129: 105159. |
[12] |
CHEN H, LIU H, WANG R, et al. Size-controllable synthesis of dendritic porous silica as reinforcing fillers for dental composites. Dental Materials, 2021, 37(6): 961.
DOI PMID |
[13] | LIANG J, LIU F, ZOU J, et al. pH-responsive antibacterial resin adhesives for secondary caries inhibition. Journal of Dental Research, 2020, 99(12): 1368. |
[14] | CAO L Y, YAN J R, LUO T, et al. Antibacterial and fluorescent clear aligner attachment resin modified with chlorhexidine loaded mesoporous silica nanoparticles and zinc oxide quantum dots. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 141: 105817. |
[15] |
AI M, DU Z Y, ZHU S Q, et al. Composite resin reinforced with silver nanoparticles-laden hydroxyapatite nanowires for dental application. Dental Materials, 2017, 33(1): 12.
DOI PMID |
[16] | WANG Y, WU Z Y, WANG T, et al. Bioactive dental resin composites with MgO nanoparticles. ACS Biomaterials Science & Engineering, 2023, 9(8): 4632. |
[17] | LIU Y L, WANG R L, LI N, et al. Preparation of zinc oxide mesocrystal filler and its properties as dental composite resin. Journal of Inorganic Materials, 2019, 34(10): 1077. |
[18] |
BAI X X, LIN C C, WANG Y Y, et al. Preparation of Zn doped mesoporous silica nanoparticles (Zn-MSNs) for the improvement of mechanical and antibacterial properties of dental resin composites. Dental Materials, 2020, 36(6): 794.
DOI PMID |
[19] |
SIDDIQI K S, HUSEN A, RAO R A K. A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of Nanobiotechnology, 2018, 16(1): 14.
DOI PMID |
[20] | REN J M, GUO X W. The germicidal effect, biosafety and mechanical properties of antibacterial resin composite in cavity filling. Heliyon, 2023, 9(9): e19078. |
[21] | POLSHETTIWAR V, CHA D, ZHANG X X, et al. High-surface- area silica nanospheres (KCC-1) with a fibrous morphology. Angewandte Chemie International Edition, 2010, 49(50): 9846. |
[22] | BOARO L C, GONÇALVES F, GUIMARÃES T C, et al. Sorption, solubility, shrinkage and mechanical properties of “low-shrinkage” commercial resin composites. Dental Materials, 2013, 29(4): 398. |
[23] | TANTBIROJN D, PFEIFER C S, BRAGA R R, et al. Do low- shrink composites reduce polymerization shrinkage effects? Journal of Dental Research, 2011, 90(5): 596. |
[24] | WANG Y, HU K, HE J, et al. Improving the size uniformity of dendritic fibrous nano-silica by a facile one-pot rotating hydrothermal approach. RSC Advances, 2019, 9(43): 24783. |
[25] | WANG Y Y, BAI X X, LI H Z, et al. Effect of monodisperse mesoporous bioactive glass spheres (MBGs) on the mechanical properties and bioactivity of dental composites. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 142: 105820. |
[26] |
GAO A, HANG R Q, HUANG X B, et al. The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts. Biomaterials, 2014, 35(13): 4223.
DOI PMID |
[27] |
WANG R L, HABIB E, ZHU X X. Synthesis of wrinkled mesoporous silica and its reinforcing effect for dental resin composites. Dental Materials, 2017, 33(10): 1139.
DOI PMID |
[28] |
SAMUEL S P, LI S X, MUKHERJEE I, et al. Mechanical properties of experimental dental composites containing a combination of mesoporous and nonporous spherical silica as fillers. Dental Materials, 2009, 25(3): 296.
DOI PMID |
[1] | 杨平军, 李铁虎, 李昊, 党阿磊. 石墨烯对环氧树脂泡沫炭石墨化、电导率和力学性能的影响[J]. 无机材料学报, 2024, 39(1): 107-112. |
[2] | 孙小凡, 陈小武, 靳喜海, 阚艳梅, 胡建宝, 董绍明. 低温反应熔渗工艺制备AlN-SiC复相陶瓷及其性能研究[J]. 无机材料学报, 2023, 38(10): 1223-1229. |
[3] | 盛丽丽, 常江. 光/磁热Fe2SiO4/Fe3O4双相生物陶瓷及其复合电纺丝膜制备及抗菌性能研究[J]. 无机材料学报, 2022, 37(9): 983-990. |
[4] | 李文俊, 王皓, 涂兵田, 谌强国, 郑凯平, 王为民, 傅正义. 宽光谱透过Mg0.9Al2.08O3.97N0.03透明陶瓷的制备与性能研究[J]. 无机材料学报, 2022, 37(9): 969-975. |
[5] | 魏婷婷, 高希光, 宋迎东. 2D SiC/SiC复合材料电阻率对服役环境的响应特性[J]. 无机材料学报, 2022, 37(4): 420-426. |
[6] | 王恩典, 常江. 钼掺杂铜硅钙石的制备及其抗菌性能和细胞相容性研究[J]. 无机材料学报, 2021, 36(7): 738-744. |
[7] | 冯明星, 王斌, 徐鹏宇, 涂兵田, 王皓. 基于键价模型的MgAl2O4透明陶瓷热机械性能预测[J]. 无机材料学报, 2021, 36(10): 1067-1073. |
[8] | 张晓阳, 彭海波, 刘枫飞, 赵彦, 孙梦利, 管明, 张冰焘, 杜鑫, 袁伟, 王铁山. 多种重离子辐照对硼硅酸盐玻璃机械性能的影响[J]. 无机材料学报, 2019, 34(7): 741-747. |
[9] | 刘玉玲, 王瑞莉, 李楠, 刘梅, 张青红. ZnO介晶填料的制备及其齿科复合树脂的性能[J]. 无机材料学报, 2019, 34(10): 1077-1084. |
[10] | 张舟, 王皓, 涂兵田, 徐鹏宇, 王为民, 傅正义. Mg0.27Al2.58O3.73N0.27透明陶瓷机械性能评价[J]. 无机材料学报, 2018, 33(9): 1006-1010. |
[11] | 聂恒昌, 王永龄, 贺红亮, 王根水, 董显林. 多孔PZT95/5铁电陶瓷材料研究进展[J]. 无机材料学报, 2018, 33(2): 153-161. |
[12] | 曾 涛, 白 杨, 沈喜训, 王保峰, 董显林, 周志勇. 多孔PZT95/5铁电陶瓷的机械性能和铁电性能研究[J]. 无机材料学报, 2014, 29(7): 758-762. |
[13] | 谭 英, 谭帼馨, 宁成云, 容锡沧, 张 余, 周 蕾. 聚多巴胺修饰钛表面纳米载银及其抗菌和细胞相容性[J]. 无机材料学报, 2014, 29(12): 1320-1326. |
[14] | 李伟信, 白明敏, 陆 颖, 饶平根. Al2O3/Steel-epoxy层状复合材料的制备和性能[J]. 无机材料学报, 2013, 28(4): 453-459. |
[15] | 张翔宇, 蒋 立, 黄晓波, 马 永, 范爱兰, 唐 宾. 不锈钢表面渗铜扩散复合处理合金层的抗菌性能研究[J]. 无机材料学报, 2012, 27(5): 519-523. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||