无机材料学报 ›› 2025, Vol. 40 ›› Issue (1): 70-76.DOI: 10.15541/jim20240304 CSTR: 32189.14.10.15541/jim20240304
马俊杰1(), 杨钰莹1, 高名扬1, 齐冰杰1, 吴玉龙1,2, 黄雪莉1, 黄河1(
)
收稿日期:
2024-06-21
修回日期:
2024-08-26
出版日期:
2025-01-20
网络出版日期:
2024-09-02
通讯作者:
黄河, 副教授. E-mail: xjuhuanghe@xju.edu.cn作者简介:
马俊杰(2002-), 男, 本科. E-mail: 2165471663@qq.com
基金资助:
MA Junjie1(), YANG Yuying1, GAO Mingyang1, QI Bingjie1, WU Yulong1,2, HUANG Xueli1, HUANG He1(
)
Received:
2024-06-21
Revised:
2024-08-26
Published:
2025-01-20
Online:
2024-09-02
Contact:
HUANG He, associate professor. E-mail: xjuhuanghe@xju.edu.cnAbout author:
MA Junjie (2002-), male, undergraduate. E-mail: 2165471663@qq.com
Supported by:
摘要:
CO2和二醇直接聚合制备碳酸酯是一种绿色高效的CO2应用途径, CeO2在该反应体系中表现出良好的催化性能。本研究以NaOH为沉淀剂, 采用水热法制备纳米CeO2催化剂, 探究了焙烧温度(500、600、700 ℃)和不同类型表面活性剂(阳离子、阴离子和非离子型)对CeO2结构和性质的影响规律。当焙烧温度为600 ℃时, CeO2结晶度良好且缺陷位点数量超过其他焙烧温度制得样品。各类表面活性剂(阳离子、阴离子和非离子型)能有效提高CeO2表面氧空位浓度, 25 ℃下的CO2吸收量最高可达0.532 mmol/g。基于以上研究, 将制备的一系列CeO2催化剂应用于CO2和二醇一步法合成聚碳酸酯的反应中, 可有效提高反应体系的转化率和选择性。结果表明, 不同焙烧温度和表面活性剂制备的CeO2的催化活性存在显著差异。以十六烷基三甲基溴化铵(CTAB)作为表面活性剂, 在600 ℃下焙烧得到的CeO2显示出最高的催化活性和选择性(1,6-己二醇转化率为91.0%, 聚(6-羟基己基)碳酸酯选择性为76.6%)。CeO2优异的催化活性以及高产率主要归因于其良好的结构、丰富的缺陷位点和高的CO2吸收能力。
中图分类号:
马俊杰, 杨钰莹, 高名扬, 齐冰杰, 吴玉龙, 黄雪莉, 黄河. 纳米CeO2的制备及其在CO2合成聚碳酸酯中的活性[J]. 无机材料学报, 2025, 40(1): 70-76.
MA Junjie, YANG Yuying, GAO Mingyang, QI Bingjie, WU Yulong, HUANG Xueli, HUANG He. Preparation and Activity of CeO2 Nanoparticles in Synthesis of Polycarbonates from CO2[J]. Journal of Inorganic Materials, 2025, 40(1): 70-76.
Sample | Average particle size/nm | Relative crystallinity/% | ID/IF2g |
---|---|---|---|
CeO2-500 | 8.3 | 74.3 | 0.029 |
CeO2-600 | 11.7 | 81.4 | 0.036 |
CeO2-700 | 15.8 | 82.9 | 0.014 |
CTAB-CeO2 | 10.0 | 82.6 | 0.045 |
SDS-CeO2 | 10.5 | 80.1 | 0.039 |
PEG-CeO2 | 9.3 | 76.5 | 0.024 |
表1 样品的物理化学性质
Table 1 Physicochemical properties of samples
Sample | Average particle size/nm | Relative crystallinity/% | ID/IF2g |
---|---|---|---|
CeO2-500 | 8.3 | 74.3 | 0.029 |
CeO2-600 | 11.7 | 81.4 | 0.036 |
CeO2-700 | 15.8 | 82.9 | 0.014 |
CTAB-CeO2 | 10.0 | 82.6 | 0.045 |
SDS-CeO2 | 10.5 | 80.1 | 0.039 |
PEG-CeO2 | 9.3 | 76.5 | 0.024 |
图2 样品的微观形貌表征
Fig. 2 Micro-morphological characterization of samples (a-c) SEM images of (a) CeO2-500, (b) CeO2-600 and (c) CeO2-700; (d-e) TEM images of (d) CeO2-600 and (e) CTAB-CeO2; (f) HRTEM image of CeO2-600
Sample | C/% | S/% | Y/% | Mn/(g·mol-1) | Dp |
---|---|---|---|---|---|
CeO2-500 | 86.4 | 67.1 | 58.0 | 982 | 6 |
CeO2-600 | 88.9 | 74.5 | 66.3 | 1171 | 8 |
CeO2-700 | 85.6 | 5.9 | 5.1 | 1153 | 8 |
CTAB-CeO2 | 91.0 | 76.6 | 69.7 | 1333 | 9 |
SDS-CeO2 | 90.5 | 76.1 | 68.9 | 1108 | 8 |
PEG-CeO2 | 88.8 | 43.3 | 38.5 | 1169 | 8 |
表2 CO2和1,6-HDO在CeO2催化剂上反应的测试结果
Table 2 Test results of reaction of CO2 and 1,6-HDO on CeO2 catalysts
Sample | C/% | S/% | Y/% | Mn/(g·mol-1) | Dp |
---|---|---|---|---|---|
CeO2-500 | 86.4 | 67.1 | 58.0 | 982 | 6 |
CeO2-600 | 88.9 | 74.5 | 66.3 | 1171 | 8 |
CeO2-700 | 85.6 | 5.9 | 5.1 | 1153 | 8 |
CTAB-CeO2 | 91.0 | 76.6 | 69.7 | 1333 | 9 |
SDS-CeO2 | 90.5 | 76.1 | 68.9 | 1108 | 8 |
PEG-CeO2 | 88.8 | 43.3 | 38.5 | 1169 | 8 |
Sample | SBET/(m2·g-1) | Proe volume/ (cm3·g-1) | Average pore size/nm |
---|---|---|---|
CeO2-500 | 118 | 0.76 | 27.91 |
CeO2-600 | 113 | 0.80 | 28.27 |
CeO2-700 | 42 | 0.30 | 31.26 |
CTAB-CeO2 | 119 | 0.92 | 30.39 |
表S1 样品的比表面积、孔容和平均孔径
Table S1 Specific surface area, pore volume, and average pore size of samples
Sample | SBET/(m2·g-1) | Proe volume/ (cm3·g-1) | Average pore size/nm |
---|---|---|---|
CeO2-500 | 118 | 0.76 | 27.91 |
CeO2-600 | 113 | 0.80 | 28.27 |
CeO2-700 | 42 | 0.30 | 31.26 |
CTAB-CeO2 | 119 | 0.92 | 30.39 |
Sample | Peak number | Temperature at maximum/℃ | Quantity/ (mmol·g-1) |
---|---|---|---|
CeO2-500 | 2 | 116.6 | 0.214 |
269.8 | 0.104 | ||
CeO2-600 | 1 | 156.6 | 0.403 |
CeO2-700 | 1 | 137.3 | 0.288 |
CTAB-CeO2 | 1 | 146.3 | 0.532 |
表S2 样品的CO2-TPD测试数据分析
Table S2 Analysis of CO2-TPD test data of samples
Sample | Peak number | Temperature at maximum/℃ | Quantity/ (mmol·g-1) |
---|---|---|---|
CeO2-500 | 2 | 116.6 | 0.214 |
269.8 | 0.104 | ||
CeO2-600 | 1 | 156.6 | 0.403 |
CeO2-700 | 1 | 137.3 | 0.288 |
CTAB-CeO2 | 1 | 146.3 | 0.532 |
Number of reaction | 1 | 2 | 3 |
---|---|---|---|
1,6-HDO conversion/% | 91.0 | 88.9 | 86.3 |
表S3 CTAB-CeO2的稳定性测试
Table S3 Stability test of CTAB-CeO2
Number of reaction | 1 | 2 | 3 |
---|---|---|---|
1,6-HDO conversion/% | 91.0 | 88.9 | 86.3 |
[1] | WANG W H, HIMEDA Y, MUCKERMAN J T, et al. CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chemical Reviews, 2015, 115(23): 12936. |
[2] | JIANG X, NIE X, GUO X, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chemical Reviews, 2020, 120(15): 7984. |
[3] | GUO L, SUN J, GE Q, et al. Recent advances in direct catalytic hydrogenation of carbon dioxide to valuable C2+ hydrocarbons. Journal of Materials Chemistry A, 2018, 6(46): 23244. |
[4] | LI W, WANG H, JIANG X, et al. A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts. RSC Advances, 2018, 8(14): 7651. |
[5] | CHEN H, CHAUHAN P, YAN N. “Barking” up the right tree: biorefinery from waste stream to cyclic carbonate with immobilization of CO2 for non-isocyanate polyurethanes. Green Chemistry, 2020, 22(20): 6874. |
[6] | HONDA M, SONEHAR S, YASUDA H, et al. Heterogeneous CeO2 catalyst for the one-pot synthesis of organic carbamates from amines, CO2 and alcohols. Green Chemistry, 2011, 13(12): 3406. |
[7] | GRIGNARD B, GENNEN S, JÉRÔME C, et al. Advances in the use of CO2 as a renewable feedstock for the synthesis of polymers. Chemical Society Reviews, 2019, 48(16): 4466. |
[8] | ZHANG X, FEVRE M, JONES G O, et al. Catalysis as an enabling science for sustainable polymers. Chemical Reviews, 2017, 118(2): 839. |
[9] | KAMPHUIS A J, PICCHIONI F, PESCARMONA P P. CO2-fixation into cyclic and polymeric carbonates: principles and applications. Green Chemistry, 2019, 21(3): 406. |
[10] | LEINO E, MAKI-ÄRVELA P, ETA V, et al. Conventional synthesis methods of short-chain dialkylcarbonates and novel production technology via direct route from alcohol and waste CO2. Applied Catalysis A: General, 2010, 383(1/2): 1. |
[11] | KUMAR P, WITH P, SRIVASTAVA V C, et al. Conversion of carbon dioxide along with methanol to dimethyl carbonate over ceria catalyst. Journal of Environmental Chemical Engineering, 2015, 3(4): 2943. |
[12] | FU Z, YU Y, LI Z, et al. Surface reduced CeO2 nanowires for direct conversion of CO2 and methanol to dimethyl carbonate: catalytic performance and role of oxygen vacancy. Catalysts, 2018, 8(4): 164. |
[13] | TAMURA M, ITO K, HONDA M, et al. Direct copolymerization of CO2 and diols. Scientific Reports, 2016, 6(1): 20438. |
[14] | BAGHERI S, KHALIL I, JULKAPLI N M. Cerium(IV) oxide nanocomposites: catalytic properties and industrial application. Journal of Rare Earths, 2021, 39(2): 129. |
[15] | CASTKOVA K, MATOUSEK A, BARTONICKOVA E, et al. Sintering of Ce, Sm, and Pr oxide nanorods. Journal of the American Ceramic Society, 2016, 99(4): 1155. |
[16] | FILTSCHEW A, HOFMANN K, HESS C. Ceria and its defect structure: new insights from a combined spectroscopic approach. The Journal of Physical Chemistry C, 2016, 120(12): 6694. |
[17] | SCHILLING C, HOFMANN A, HESS C, et al. Raman spectra of polycrystalline CeO2: a density functional theory study. The Journal of Physical Chemistry C, 2017, 121(38): 20834. |
[18] | SCHILLING C, GANDUGLIA-PIROVANO M V, HESS C. Experimental and theoretical study on the nature of adsorbed oxygen species on shaped ceria nanoparticles. The Journal of Physical Chemistry Letters, 2018, 9(22): 6593. |
[19] | WU Z, LI M, HOWE J, et al. Probing defect sites on CeO2 nanocrystals with well-defined surface planes by Raman spectroscopy and O2 adsorption. Langmuir, 2010, 26(21): 16595. |
[20] | YANG G, JIA A, LI J, et al. Investigation of synthesis parameters to fabricate CeO2 with a large surface and high oxygen vacancies for dramatically enhanced performance of direct DMC synthesis from CO2 and methanol. Molecular Catalysis, 2022, 528: 112471. |
[21] | LIU B, LI C, ZHANG G, et al. Oxygen vacancy promoting dimethyl carbonate synthesis from CO2 and methanol over Zr-doped CeO2 nanorods. ACS Catalysis, 2018, 8(11): 10446. |
[22] | EAIMSUMANG S, CHOLLACOOP N, LUENGNARUEMITCH-AI A, et al. Ceria nanorod supported gold nanoparticles as structured catalysts for the oxidative steam reforming of methanol: effect of CTAB concentration on physiochemical properties and catalyst performance. Journal of Catalysis, 2020, 392: 254. |
[23] | CHAVHAN M P, LU C H, SOM S. Urea and surfactant assisted hydrothermal growth of ceria nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601: 124944. |
[24] | MEI J, ZHANG S, PAN G, et al. Surfactant-assisted synthesis of MOF- derived CeO2 for low-temperature catalytic o-xylene combustion. Journal of Environmental Chemical Engineering, 2022, 10(6): 108743. |
[25] | WANG X, JIANG Z, ZHENG B, et al. Synthesis and shape- dependent catalytic properties of CeO2 nanocubes and truncated octahedra. CrystEngComm, 2012, 14(22): 7579. |
[26] | GONG Z J, LI Y R, WU H L, et al. Direct copolymerization of carbon dioxide and 1,4-butanediol enhanced by ceria nanorod catalyst. Applied Catalysis B: Environmental, 2020, 265: 118524. |
[27] | LIU H, ZOU W, XU X, et al. The proportion of Ce4+ in surface of CexZr1-xO2 catalysts: the key parameter for direct carboxylation of methanol to dimethyl carbonate. Journal of CO2 Utilization, 2017, 17: 43. |
[28] | WANG S, ZHAO L, WANG W, et al. Morphology control of ceria nanocrystals for catalytic conversion of CO2 with methanol. Nanoscale, 2013, 5(12): 5582. |
[29] | YU W Y, MULLEN G M, MULLINS C B. Hydrogen adsorption and absorption with Pd-Au bimetallic surfaces. The Journal of Physical Chemistry, 2013, 117(38): 19535. |
[30] | ZHANG T, ZHANG Y, NING P, et al. The property tuning of NH3- SCR over iron-tungsten catalyst: role of calcination temperature on surface defect and acidity. Applied Surface Science, 2021, 538: 147999. |
[31] | VANTOMME A, YUAN Z Y, DU G, et al. Surfactant-assisted large-scale preparation of crystalline CeO2 nanorods. Langmuir, 2005, 21(3): 1132. |
[32] |
PARIA S, KHILAR K C. A review on experimental studies of surfactant adsorption at the hydrophilic solid-water interface. Advances in Colloid and Interface Science, 2004, 110(3): 75.
PMID |
[33] | WU Z, MANN A K P, LI M, et al. Spectroscopic investigation of surface-dependent acid-base property of ceria nanoshapes. The Journal of Physical Chemistry C, 2015, 119(13): 7340. |
[1] | 李学林, 朱建锋, 焦宇鸿, 黄家璇, 赵倩楠. 二氧化锰形貌对Ti3C2Tx@MnO2复合材料电化学性能的影响[J]. 无机材料学报, 2020, 35(1): 119-125. |
[2] | 史忠祥, 王晶, 关昕. Er3+掺杂调控NaY(WO4)2: Dy3+的上转换发光性能[J]. 无机材料学报, 2018, 33(5): 521-527. |
[3] | 代光, 肖欢, 郝文明, 马静红, 李瑞丰. 具有多级孔结构的丝光沸石的合成与性能研究[J]. 无机材料学报, 2018, 33(4): 397-402. |
[4] | 张国雄, 陈月梅, 何臻妮, 林川, 陈益钢, 郭海波. 表面活性剂对NiCo2S4纳米薄膜的电化学性能影响的研究[J]. 无机材料学报, 2018, 33(3): 289-294. |
[5] | 徐荣, 姜万, 戚律, 张琪, 钟璟. PEG交联有机硅/陶瓷杂化膜的制备及反渗透脱盐性能[J]. 无机材料学报, 2018, 33(11): 1154-1160. |
[6] | 路淑娟, 王 唱, 赵博文, 汪 浩, 刘晶冰, 严 辉. PEG改性氧化钨薄膜的电致变色特性[J]. 无机材料学报, 2017, 32(2): 185-190. |
[7] | 郑磊, 李劲, 刘洪波. AEP作用下溶胶-凝胶法制备纤维素基炭气凝胶及其对水溶液中Cu2+吸附性能[J]. 无机材料学报, 2017, 32(11): 1159-1164. |
[8] | 齐美丽, 亓 佳, 肖桂勇, 吕宇鹏. 表面活性剂对羟基磷灰石纤维形貌的影响[J]. 无机材料学报, 2016, 31(7): 726-730. |
[9] | 梁 培, 邢 淞, 舒海波, 张 琳, 胡陈力. 准三维MoS2/graphene复合材料储锂性能研究[J]. 无机材料学报, 2016, 31(6): 575-580. |
[10] | 甘琼枝, 温小玲, 丁一鸣, 欧阳健明. 不同尺寸COM、COD对阳离子表面活性剂CTAB的吸附性质差异[J]. 无机材料学报, 2016, 31(2): 159-164. |
[11] | 徐金芳, 邵蒙蒙, 倪哲明, 肖雪春. 反相气相色谱法探究镁铁水滑石及其改性材料的表面性质[J]. 无机材料学报, 2015, 30(9): 971-976. |
[12] | 居相文, 吴日民, 周亚洲, 马双彪, 杨 娟, 程晓农. 氧化石墨烯在水热法制备Sc2W3O12粉体中的应用[J]. 无机材料学报, 2015, 30(4): 374-378. |
[13] | 马平平, 刘志坚, 夏建华, 卢志超. 聚乙二醇为碳源合成0.7LiFePO4ּ0.3Li3V2(PO4)3/C 复合正极材料及性能研究[J]. 无机材料学报, 2015, 30(2): 122-128. |
[14] | 安建国, 高 翔, 金军江, 顾金楼, 李 亮, 李永生, 施剑林. 以聚乙二醇为模板凝胶转化制备介孔ZSM-5沸石及其催化性能[J]. 无机材料学报, 2015, 30(11): 1148-1154. |
[15] | 赵晶晶, 沈 军, 邹丽萍, 王文琴, 祖国庆, 张志华. 纯水体系SiO2纳米多孔材料的低成本制备与表征[J]. 无机材料学报, 2015, 30(10): 1081-1084. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||