无机材料学报 ›› 2023, Vol. 38 ›› Issue (10): 1149-1162.DOI: 10.15541/jim20230066 CSTR: 32189.14.10.15541/jim20230066
所属专题: 【信息功能】敏感陶瓷(202409); 【信息功能】神经形态材料与器件(202409)
诸葛霞1(), 朱仁祥1, 王建民1, 王敬蕊1, 诸葛飞2,3,4,5(
)
收稿日期:
2023-02-09
修回日期:
2023-03-01
出版日期:
2023-10-20
网络出版日期:
2023-03-24
通讯作者:
诸葛飞, 研究员. E-mail: zhugefei@nimte.ac.cn作者简介:
诸葛霞(1979-), 女, 博士, 讲师. E-mail: zhugexia@nbut.edu.cn
基金资助:
ZHUGE Xia1(), ZHU Renxiang1, WANG Jianmin1, WANG Jingrui1, ZHUGE Fei2,3,4,5(
)
Received:
2023-02-09
Revised:
2023-03-01
Published:
2023-10-20
Online:
2023-03-24
Contact:
ZHUGE Fei, professor. E-mail: zhugefei@nimte.ac.cnAbout author:
ZHUGE Xia (1979-), female, PhD, lecturer. E-mail: zhugexia@nbut.edu.cn
Supported by:
摘要:
类脑神经形态计算通过电子或光子器件集成来模拟人脑结构和功能。人工突触是类脑系统中数量最多的计算单元。忆阻器可模拟突触功能, 并具有优异的尺寸缩放性和低能耗, 是实现人工突触的理想元器件。利用欧姆定律和基尔霍夫定律, 忆阻器交叉阵列可执行并行的原位乘累加运算, 从而大幅提升类脑系统处理模拟信号的速度。氧化物制备容易, 和CMOS工艺兼容性强, 是使用最广泛的忆阻器材料。本文梳理了氧化物忆阻器的研究进展, 分别讨论了电控、光电混合调控和全光控忆阻器, 主要聚焦阻变机理、器件结构和性能。电控忆阻器工作一般会产生微结构变化和焦耳热, 将严重影响器件稳定性, 改进器件结构和材料成分可有效改善器件性能。利用光信号调控忆阻器电导, 不仅能降低能耗, 而且可避免产生微结构变化和焦耳热, 从而有望解决稳定性难题。此外, 光控忆阻器能直接感受光刺激, 单器件即可实现感/存/算功能, 可用于研发新型视觉传感器。因此, 全光控忆阻器的实现为忆阻器的研究和应用打开了一扇新窗口。
中图分类号:
诸葛霞, 朱仁祥, 王建民, 王敬蕊, 诸葛飞. 面向类脑计算的氧化物忆阻器[J]. 无机材料学报, 2023, 38(10): 1149-1162.
ZHUGE Xia, ZHU Renxiang, WANG Jianmin, WANG Jingrui, ZHUGE Fei. Oxide Memristors for Brain-inspired Computing[J]. Journal of Inorganic Materials, 2023, 38(10): 1149-1162.
图1 基于TiO2-x忆阻器的单层感知器用于图像分类[74]
Fig. 1 Pattern classification using a single-layer perceptron based on TiO2-x memristor[74] (a) Mathematical abstraction of the perceptron; (b) 3×3 binary images; (c) Two sets of images used for classification; (d) Memristive crossbar circuit for the perceptron; (e) Current difference histograms for 50 input images at different training epochs
图3 Cu/Ta2O5/Pt忆阻器[108]
Fig. 3 Cu/Ta2O5/Pt memristor[108] (a) Typical current-voltage curves; (b-e) Resistive switching mechanism for Set process; (f-i) Resistive switching mechanism for Reset process
图4 OD-IGZO/OR-IGZO全光控忆阻器[34]
Fig. 4 All-optically controlled memristor based on OD-IGZO/OR-IGZO[34] (a) Optical Set behavior upon irradiation with light of various wavelengths; (b) Photocurrent responses to irradiation with light of various wavelengths after blue light irradiation; (c) Synaptic potentiation process of spike-timing dependent plasticity;(d) Synaptic depression process of spike-timing dependent plasticity
图5 ZnO全光控忆阻器[35]
Fig. 5 ZnO-based all-optically controlled memristor[35] (a) Photocurrent responses to irradiation with light of various long wavelengths after short-wavelength light irradiation; (b) Nonvolatile logic computing. Colorful figures are available on website
[1] |
DRACHMAN D A. Do we have brain to spare. Neurology, 2005, 64(12): 2004.
DOI URL |
[2] | LI Z X, GENG X Y, WANG J, et al. Emerging artificial neuron devices for probabilistic computing. Frontiers in Neuroscience, 2021, 15: 717947. |
[3] |
MEAD C. Neuromorphic electronic systems. Proceedings of the IEEE, 1990, 78(10): 1629.
DOI URL |
[4] |
MEROLLA P A, ARTHUR J V, ALVAREZ-ICAZA R, et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science, 2014, 345(6197): 668.
DOI URL |
[5] |
DIORIO C, HASLER P, MINCH B A, et al. A single-transistor silicon synapse. IEEE Transactions Electron Devices, 1996, 43(11): 1972.
DOI URL |
[6] |
FULLER E J, KEENE S T, MELIANAS A, et al. Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science, 2019, 364(6440): 570.
DOI PMID |
[7] |
WANG Z, JOSHI S, SAVEL’EV S, et al. Fully memristive neural networks for pattern classification with unsupervised learning. Nature Electronics, 2018, 1(2): 137.
DOI |
[8] |
WANG J, ZHUGE F. Memristive synapses for brain-inspired computing. Advanced Materials Technologies, 2019, 4(3): 1800544.
DOI URL |
[9] | WANG Z, ZENG T, REN Y, et al. Toward a generalized Bienenstock- Cooper-Munro rule for spatiotemporal learning via triplet-STDP in memristive devices. Nature Communications, 2020, 11: 1510. |
[10] |
SENGUPTA A, AZIM Z A, FONG X, et al. Spin-orbit torque induced spike-timing dependent plasticity. Applied Physics Letters, 2015, 106(9): 093704.
DOI URL |
[11] |
CHUA L. Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 1971, 18(5): 507.
DOI URL |
[12] | CHUA L. Resistance switching memories are memristors. Applied Physics A-Materials Science&Processing, 2011, 102: 765. |
[13] | STRUKOV D B, SNIDER G S, STEWART D R, et al. The missing memristor found. Nature, 2008, 453: 80. |
[14] | PI S, LI C, JIANG H, et al. Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension. Nature Nanotechnology, 2019, 14: 35. |
[15] |
WANG T Y, MENG J L, RAO M Y, et al. Three-dimensional nanoscale flexible memristor networks with ultralow power for information transmission and processing application. Nano Letters, 2020, 20(6): 4111.
DOI URL |
[16] | WILLIAMS R S. What’s next? Computing in Science& Engineering, 2017, 19(2): 7. |
[17] |
YANG C, SUN B, ZHOU G, et al. Photoelectric memristor-based machine vision for artificial intelligence applications. ACS Materials Letters, 2023, 5(2): 504.
DOI URL |
[18] |
WU X, DANG B, WANG H, et al. Spike-enabled audio learning in multilevel synaptic memristor array-based spiking neural network. Advanced Intelligent Systems, 2021, 4(3): 2100151.
DOI URL |
[19] |
WANG C, YANG Z, WANG S, et al. A braitenberg vehicle based on memristive neuromorphic circuits. Advanced Intelligent Systems, 2020, 2(1): 1900103.
DOI URL |
[20] | WANG Y, GONG Y, HUANG S, et al. Memristor-based biomimetic compound eye for real-time collision detection. Nature Communications, 2021, 12: 5979. |
[21] | PARK S-O, JEONG H, PARK J, et al. Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing. Nature Communications, 2022, 13: 2888. |
[22] | LIU Z, TANG J, GAO B, et al. Neural signal analysis with memristor arrays towards high-efficiency brain-machine interfaces. Nature Communications, 2020, 11: 4234. |
[23] | HAMDIOUI S, XIE L, NGUYEN H A D, et al.Memristor based computation-in-memory architecture for data-intensive applications. Design, Automation and Test in Europe Conference and Exhibition, Grenoble, 2015: 1718. |
[24] | PREZIOSO M, MERRIKH-BAYAT F, HOSKINS B D, et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature, 2015, 521: 61. |
[25] | SHERIDAN P M, CAI F X, DU C, et al. Sparse coding with memristor networks. Nature Nanotechnology, 2017, 12: 784. |
[26] |
HU M, GRAVES C E, LI C, et al. Memristor-based analog computation and neural network classification with a dot product engine. Advanced Materials, 2018, 30(9): 1705914.
DOI URL |
[27] | YAO P, WU H Q, GAO B, et al. Face classification using electronic synapses. Nature Communications, 2017, 8: 15199. |
[28] | YAO P, WU H Q, GAO B, et al. Fully hardware-implemented memristor convolution neural network. Nature, 2020, 577: 641. |
[29] |
ZHUGE F, LI K, FU B, et al. Mechanism for resistive switching in chalcogenide-based electrochemical metallization memory cells. AIP Advances, 2015, 5(5): 057125.
DOI URL |
[30] |
ZHANG S R, ZHOU L, MAO J Y, et al. Artificial synapse emulated by charge trapping-based resistive switching device. Advanced Materials Technologies, 2019, 4(2): 1800342.
DOI URL |
[31] |
ZHUGE F, DAI W, HE C L, et al. Nonvolatile resistive switching memory based on amorphous carbon. Applied Physics Letters, 2010, 96(16): 163505.
DOI URL |
[32] | ZHUGE F, HU B, HE C, et al. Mechanism of nonvolatile resistive switching in graphene oxide thin films. Carbon, 2011, 49: 3796. |
[33] |
ZHUGE F, LI J, CHEN H, et al. Single-crystalline metal filament- based resistive switching in a nitrogen-doped carbon film containing conical nanopores. Applied Physics Letters, 2015, 106(8): 083104.
DOI URL |
[34] |
HU L, YANG J, WANG J, et al. All-optically controlled memristor for optoelectronic neuromorphic computing. Advanced Functional Materials, 2021, 31(4): 2005582.
DOI URL |
[35] | YANG J, HU L, SHEN L, et al. Optically driven intelligent computing with ZnO memristor. Fundamental Research, DOI: 10.1016/j.fmre.2022.06.019. |
[36] |
STRACGAN J P, PICKETT M D, YANG J J, et al. Direct identification of the conducting channels in a functioning memristive device. Advanced Materials, 2010, 22(32): 3573.
DOI URL |
[37] | KWON D, KIM K, JANG J H, et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nature Nanotechnology, 2010, 5: 148. |
[38] |
NAGASHIMA K, YANAGIDA T, OKA K, et al. Unipolar resistive switching characteristics of room temperature grown SnO2 thin films. Applied Physics Letters, 2009, 94(24): 242902.
DOI URL |
[39] |
CAO X, LI X, GAO X, et al. Forming free colossal resistive switching effect in rare-earth-oxide Gd2O3 films for memristor applications. Journal of Applied Physics, 2009, 106(7): 073723.
DOI URL |
[40] |
SUN X, SUN B, LOU L, et al. Resistive switching in CeOx films for nonvolatile memory application. IEEE Electron Device Letters, 2009, 30(4): 334.
DOI URL |
[41] |
HUANG H H, SHIH W C, LAI C H. Nonpolar resistive switching in the Pt/MgO/Pt nonvolatile memory device. Applied Physics Letters, 2010, 96(19): 193505.
DOI URL |
[42] |
ZHANG H, GAO B, SUN B, et al. Ionic doping effect in ZrO2 resistive switching memory. Applied Physics Letters, 2010, 96(12): 123502.
DOI URL |
[43] |
CHIEN W C, CHEN Y C, LAI E K, et al. Unipolar switching behaviors of RTO WOx RAM. IEEE Electron Device Letters, 2010, 31(2): 126.
DOI URL |
[44] |
YANG M K, PARK J W, KO T K, et al. Resistive switching characteristics of TiN/MnO2/Pt memory devices. Physics Status Solidi-Rapid Research Letters, 2010, 4(8/9): 233.
DOI URL |
[45] |
GAO X, XIA Y, JI J, et al. Effect of top electrode materials on bipolar resistive switching behavior of gallium oxide films. Applied Physics Letters, 2010, 97(19): 193501.
DOI URL |
[46] |
TULINA N A, BORISENKO I Y, IONOV A M, et al. Bipolar resistive switching in heterostructures: bismuth oxide/normal metal. Solid State Communications, 2010, 150(43/44): 2089.
DOI URL |
[47] |
CHEN S C, CHANG T C, CHEN S Y, et al. Bipolar resistive switching of chromium oxide for resistive random access memory. Solid-State Electronics, 2011, 62(1): 40.
DOI URL |
[48] | YAO J, ZHONG L, NATELSON D, et al. Intrinsic resistive switching and memory effects in silicon oxide. Applied Physics A-Materials Science&Processing, 2011, 102: 835. |
[49] |
HSU C H, LIN J S, HE Y D, et al. Optical, electrical properties and reproducible resistance switching of GeO2 thin films by Sol-Gel process. Thin Solid Films, 2011, 519(15): 5033.
DOI URL |
[50] |
ARITA M, KAJI H, FUJI T, et al. Resistive switching properties of molybdenum oxide films. Thin Solid Films, 2012, 520(14): 4762.
DOI URL |
[51] |
AHN Y, LEE J H, KIM G H, et al. Concurrent presence of unipolar and bipolar resistive switching phenomena in pnictogen oxide Sb2O5 films. Journal of Applied Physics, 2012, 112(11): 114105.
DOI URL |
[52] |
PI C, REN Y, LIU Z Q, et al. Unipolar memristive switching in yttrium oxide and RESET current reduction using a yttrium interlayer. Electrochemical and Solid-State Letters, 2012, 15(3): G5.
DOI URL |
[53] |
LIN Y S, ZENG F, TANG S G, et al. Resistive switching mechanisms relating to oxygen vacancies migration in both interfaces in Ti/HfOx/Pt memory devices. Journal of Applied Physics, 2013, 113(6): 064510.
DOI URL |
[54] |
CHOI D, KIM C S. Coexistence of unipolar and bipolar resistive switching in Pt/NiO/Pt. Applied Physics Letters, 2014, 104(19): 193507.
DOI URL |
[55] | CHEN X, ZHANG H, RUAN K, et al. Annealing effect on the bipolar resistive switching behaviors of BiFeO3 thin films on LaNiO3-buffered Si substrates. Journal of Alloys and Compounds, 2012, 529: 108. |
[56] |
WASER R, DITTMANN R, STAIKOV G, et al. Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges. Advanced Materials, 2009, 21(25/26): 2632.
DOI URL |
[57] | YANG J J, STRUKOV D B, STEWART D R. Memristive devices for computing. Nature Nanotechnology, 2013, 8: 13. |
[58] |
YANG J J, STRACHAN J P, XIA Q F, et al. Diffusion of adhesion layer metals controls nanoscale memristive switching. Advanced Materials, 2010, 22(36): 4034.
DOI URL |
[59] | YANG J J, PICKET M D, LI X, et al. Memristive switching mechanism for metal/oxide/metal nanodevices. Nature Nanotechnology, 2008, 3: 429. |
[60] |
YANG J J, MIAO F, PICKETT M D, et al. The mechanism of electroforming of metal oxide memristive switches. Nanotechnology, 2009, 20(21): 215201.
DOI URL |
[61] | YANG J J, STRACHAN J P, MIAO F, et al. Metal/TiO2 interfaces for memristive switches. Applied Physics A-Materials Science&Processing, 2011, 102: 785. |
[62] |
PICKETT M D, BORGHETTI J, YANG J J, et al. Coexistence of memristance and negative differential resistance in a nanoscale metal-oxide-metal system. Advanced Materials, 2011, 23(15): 1730.
DOI URL |
[63] |
MIAO F, YANG J J, BORGHETTI J, et al. Observation of two resistance switching modes in TiO2 memristive devices electroformed at low current. Nanotechnology, 2011, 22(25): 254007.
DOI URL |
[64] |
YOON K J, LEE M H, KIM G H, et al. Memristive tri-stable resistive switching at ruptured conducting filaments of a Pt/TiO2/Pt cell. Nanotechnology, 2012, 23(18): 185202.
DOI URL |
[65] |
JEONG H Y, LEE J Y, CHOI S Y. Interface-engineered amorphous TiO2-based resistive memory devices. Advanced Functional Materials, 2010, 20(22): 3912.
DOI URL |
[66] |
YANG J J, ZHANG M X, STRACHAN J P, et al. High switching endurance in TaOx memristive devices. Applied Physics Letters, 2010, 97(23): 232102.
DOI URL |
[67] |
QI J, OLMEDO M, REN J, et al. Resistive switching in single epitaxial ZnO nanoislands. ACS Nano, 2012, 6(2): 1051.
DOI PMID |
[68] |
WANG W, PEDRETTI G, MILO V, et al. Learning of spatiotemporal patterns in a spiking neural network with resistive switching synapses. Science Advances, 2018, 4(9): eaat4752.
DOI URL |
[69] | WANG W, PREDRETTI G, MILO V, et al. Computing of temporal information in spiking neural networks with ReRAM synapses. Faraday Discussions, 2019, 213: 453. |
[70] |
CHANDRASEKARAN S, SIMANJUNTAK F M, SAMINATHAN R, et al. Improving linearity by introducing Al in HfO2 as memristor synapse device. Nanotechnology, 2019, 30(44): 445205.
DOI URL |
[71] |
SUN X, ZHANG T, CHENG C, et al. A memristor-based in-memory computing network for Hamming code error correction. IEEE Electron Device Letters, 2019, 40(7): 1080.
DOI URL |
[72] | PARK J, PARK E, KIM S, et al. Nitrogen-induced enhancement of synaptic weight reliability in titanium oxide-based resistive artificial synapse and demonstration of the reliability effect on the neuromorphic system. ACS Applied Materials&Interfaces, 2019, 11(35): 32178. |
[73] |
WU P Y, ZHENG H X, SHIH C C, et al. Improvement of resistive switching characteristics in zinc oxide-based resistive random access memory by ammoniation annealing. IEEE Electron Device Letters, 2020, 41(3): 357.
DOI URL |
[74] |
ALIBART F, ZAMANIDOOST E, STRUKOV D B. Pattern classification by memristive crossbar circuits using ex situ and in situ training. Nature Communications, 2013, 4: 2072.
DOI |
[75] |
YANG J J, ZHANG M-X, PICKETT M D, et al. Engineering nonlinearity into memristors for passive crossbar applications. Applied Physics Letters, 2012, 100(11): 113501.
DOI URL |
[76] |
KIM S, ABBAS Y, JEON Y R, et al. Engineering synaptic characteristics of TaOx/HfO2 bi-layered resistive switching device. Nanotechnology, 2018, 29(41): 415204.
DOI URL |
[77] | LIU L, XIONG W, LIU Y, et al. Designing high-performance storage in HfO2/BiFeO3 memristor for artificial synapse applications. Advanced Electronic Materials, 2020, 109(22): 1901012. |
[78] | LEE M-J, LEE C B, LEE D, et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures. Nature Materials, 2011, 10: 625. |
[79] |
LIU J, YANG H, JI Y, et al. An electronic synaptic device based on HfO2/TiOx bilayer structure memristor with self-compliance and deep-Reset characteristics. Nanotechnology, 2018, 29(41): 415205.
DOI URL |
[80] |
YIN J, ZENG F, WAN Q, et al. Adaptive crystallite kinetics in homogenous bilayer oxide memristor for emulating diverse synaptic plasticity. Advanced Functional Materials, 2018, 28(19): 1706927.
DOI URL |
[81] |
WANG R, SHI T, ZHANG X, et al. Bipolar analog memristors as artificial synapses for neuromorphic computing. Materials, 2018, 11(11): 2102.
DOI URL |
[82] | HANSEN M, ZAHARI F, KOHLSTEDT H, et al. Unsupervised Hebbian learning experimentally realized with analogue memristive crossbar arrays. Scientific Reports, 2018, 8: 8914. |
[83] |
DANG B, WU Q, SONG F, et al. A bio-inspired physically transient/biodegradable synapse for security neuromorphic computing based on memristors. Nanoscale, 2018, 10(43): 20089.
DOI PMID |
[84] | BANG S, KIM M H, KIM T H, et al. Gradual switching and self-rectifying characteristics of Cu/α-IGZO/p+-Si RRAM for synaptic device application. Solid-State Electronics, 2018, 150: 60. |
[85] |
KIM H J, KIM M, BEOM K, et al. A Pt/ITO/CeO2/Pt memristor with an analog, linear, symmetric, and long-term stable synaptic weight modulation. APL Materials, 2019, 7(7): 071113.
DOI URL |
[86] |
ZHOU Y, WU H Q, GAO B, et al. Associative memory for image recovery with a high-performance memristor array. Advanced Functional Materials, 2019, 29(30): 1900155.
DOI URL |
[87] | SOKOLOV A S, JEON Y R, KIM S, et al. Bio-realistic synaptic characteristics in the cone-shaped ZnO memristive device. NPG Asia Materials, 2019, 11: 5. |
[88] |
XU H, ZHAI X, WANG Z, et al. An epitaxial synaptic device made by a band-offset BaTiO3/Sr2IrO4 bilayer with high endurance and long retention. Applied Physics Letters, 2019, 114(10): 102904.
DOI URL |
[89] | SOKOLOV A S, JEON Y R, KU B, et al. Ar ion plasma surface modification on the heterostructured TaOx/InGaZnO thin films for flexible memristor synapse. Journal of Alloys and Compounds, 2020, 822: 153625. |
[90] | MAHATA C, LEE C, AN Y, et al. Resistive switching and synaptic behaviors of an HfO2/Al2O3 stack on ITO for neuromorphic systems. Journal of Alloys and Compounds, 2020, 826: 154434. |
[91] | CHEN J Y, WU M C, TING Y H, et al. Applications of p-n homojunction ZnO nanowires to one-diode one-memristor RRAM arrays. Scripta Materialia, 2020, 187: 439. |
[92] |
HUANG X D, LI Y, LI H Y, et al. Forming-free, fast, uniform, and high endurance resistive switching from cryogenic to high temperatures in W/AlOx/Al2O3/Pt bilayer memristor. IEEE Electron Device Letters, 2020, 41(4): 549.
DOI URL |
[93] |
YIN X, WANG Y, CHANG T H, et al. Memristive behavior enabled by amorphous-crystalline 2D oxide heterostructure. Advanced Materials, 2020, 32(22): 2000801.
DOI URL |
[94] | ZHANG L, XU Z, HAN J, et al. Resistive switching performance improvement of InGaZnO-based memory device by nitrogen plasma treatment. Journal of Materials Science&Technology, 2020, 49: 1. |
[95] |
BOUSOULAS P, MICHELAKAKI I, SKOTADIS E, et al. Low power forming free TiO2-x/Hf02-x/TiO2-x-trilayer RRAM devices exhibiting synaptic property characteristics. IEEE Transactions on Electron Devices, 2017, 64(8): 3151.
DOI URL |
[96] |
YU S, GAO B, FANG Z, et al. A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation. Advanced Materials, 2013, 25(12): 1774.
DOI URL |
[97] |
BESSONOV A A, KIRIKOVA M N, PETUKHOV D I, et al. Layered memristive and memcapacitive switches for printable electronics. Nature Materials, 2015, 14(2): 199.
DOI PMID |
[98] |
WANG C, HE W, TONG Y, et al. Memristive devices with highly repeatable analog states boosted by graphene quantum dots. Small, 2017, 13(20): 1603435.
DOI URL |
[99] | TAO Y, WANG Z, XU H, et al. Moisture-powered memristor with interfacial oxygen migration for power-free reading of multiple memory states. Nano Energy, 2020, 71: 104628. |
[100] |
SCHINDLER C, THERMADAM S C P, WASER R, et al. Bipolar and unipolar resistive switching in Cu-doped SiO2. IEEE Transactions on Electron Devices, 2007, 54(10): 2762.
DOI URL |
[101] |
HAEMORI M, NAGATA T, CHIKYOW T. Impact of Cu electrode on switching behavior in a Cu/HfO2/Pt structure and resultant Cu ion diffusion. Applied Physics Express, 2009, 2(6): 061401.
DOI URL |
[102] |
LI Y, LONG S, ZHANG M, et al. Resistive switching properties of Au/ZrO2/Ag structure for low-voltage nonvolatile memory applications. IEEE Electron Device Letters, 2010, 31(2): 117.
DOI URL |
[103] |
YAN X B, LI K, YIN J, et al. The resistive switching mechanism of Ag/SrTiO3/Pt memory cells. Electrochemical and Solid-State Letters, 2010, 13(3): H87.
DOI URL |
[104] |
LI Y, LONG S, LIU Q, et al. Nonvolatile multilevel memory effect in Cu/WO3/Pt device structures. Physics Status Solidi-Rapid Research Letters, 2010, 4(5/6): 124.
DOI URL |
[105] |
PENG S, ZHUGE F, CHEN X, et al. Mechanism for resistive switching in an oxide-based electrochemical metallization memory. Applied Physics Letters, 2012, 100(7): 072101.
DOI URL |
[106] | VALOV I, LINN E, TAPPERTZHOFEN S, et al. Nanobatteries in redox-based resistive switches require extension of memristor theory. Nature Communications, 2013, 4: 1771. |
[107] |
TSUNODA K, FUKUZUMI Y, JAMESON J, et al. Bipolar resistive switching in polycrystalline TiO2 films. Applied Physics Letters, 2007, 90(11): 113501.
DOI URL |
[108] |
TSURUOKA T, TERABE K, HASEGAWA T, et al. Forming and switching mechanisms of a cation-migration-based oxide resistive memory. Nanotechnology, 2010, 21(42): 425205.
DOI URL |
[109] | WEDIG A, LUEBBEN M, CHO D Y, et al. Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems. Nature Nanotechnology, 2016, 11: 67. |
[110] | JIANG H, HAN L, LIN P, et al. Sub-10 nm Ta channel responsible for superior performance of a HfO2 memristor. Scientific Reports, 2016, 6: 28525. |
[111] |
CHEN W, FANG R, BALABAN M B, et al. A CMOS-compatible electronic synapse device based on Cu/SiO2/W programmable metallization cells. Nanotechnology, 2016, 27(25): 255202.
DOI URL |
[112] | WANG Z, JOSHI S, SAVEL’EV S E, et al. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nature Materials, 2017, 16(1): 101. |
[113] |
LUBBEN M, CUPPERS F, MOHR J, et al. Design of defect- chemical properties and device performance in memristive systems. Science Advances, 2020, 6(19): eaaz9079.
DOI URL |
[114] |
GUO X, WANG Q, LV X, et al. SiO2/Ta2O5 heterojunction ECM memristors: physical nature of their low voltage operation with high stability and uniformity. Nanoscale, 2020, 12(7): 4320.
DOI URL |
[115] | ALI A, ABBAS Y, ABBAS H, et al. Dependence of InGaZnO and SnO2 thin film stacking sequence for the resistive switching characteristics of conductive bridge memory devices. Applied Surface Science, 2020, 525: 146390. |
[116] | CHANG C F, CHEN J Y, HUANG G M, et al. Revealing conducting filament evolution in low power and high reliability Fe3O4/Ta2O5 bilayer RRAM. Nano Energy, 2018, 53: 871. |
[117] | HU Q, LI R, ZHANG X, et al. Lithium ion trapping mechanism of SiO2 in LiCoO2 based memristors. Scientific Reports, 2019, 9: 5081. |
[118] | IOANNOU P S, KYRIAKIDES E, SCHNEEGANS O, et al. Evidence of biorealistic synaptic behavior in diffusive Li-based two- terminal resistive switching devices. Scientific Reports, 2020, 10: 8711. |
[119] |
YAN X, ZHANG L, CHEN H, et al. Graphene oxide quantum dots based memristors with progressive conduction tuning for artificial synaptic learning. Advanced Functional Materials, 2018, 28(40): 1803728.
DOI URL |
[120] |
LIM S, KWAK M, HWANG H. Improved synaptic behavior of CBRAM using internal voltage divider for neuromorphic systems. IEEE Transactions Electron Devices, 2018, 65(9): 3976.
DOI URL |
[121] |
LIM S, KWAK M, HWANG H. One transistor-two resistive RAM device for realizing bidirectional and analog neuromorphic synapse devices. Nanotechnology, 2019, 30(45): 455201.
DOI URL |
[122] |
LIM S, SUNG C, KIM H, et al. Improved synapse device with MLC and conductance linearity using quantized conduction for neuromorphic systems. IEEE Electron Device Letters, 2018, 39(2): 312.
DOI URL |
[123] |
YAN X, PEI Y, CHEN H, et al. Self-assembled networked PbS distribution quantum dots for resistive switching and artificial synapse performance boost of memristors. Advanced Materials, 2019, 31(7): 1805284.
DOI URL |
[124] |
LU Y F, LI Y, LI H Y, et al. Low-power artificial neurons based on Ag/TiN/HfAlOx/Pt threshold switching memristor for neuromorphic computing. IEEE Electron Device Letters, 2020, 41(8): 1245.
DOI URL |
[125] |
KUMAR M, ABBAS S, LEE J-H, et al. Controllable digital resistive switching for artificial synapses and pavlovian learning algorithm. Nanoscale, 2019, 11(33): 15596.
DOI PMID |
[126] | YAN X, QIN C, LU C, et al. Robust Ag/ZrO2/WS2/Pt memristor for neuromorphic computing. ACS Applied Materials&Interfaces, 2019, 11(51): 48029. |
[127] |
CHOI Y, LEE C, KIM M, et al. Structural engineering of Li based electronic synapse for high reliability. IEEE Electron Device Letters, 2019, 40(12): 1992.
DOI URL |
[128] |
PAN R, LI J, ZHUGE F, et al. Synaptic devices based on purely electronic memristors. Applied Physics Letters, 2016, 108(1): 013504.
DOI URL |
[129] |
WANG J, PAN R, CAO H, et al. Anomalous rectification in a purely electronic memristor. Applied Physics Letters, 2016, 109(14): 143505.
DOI URL |
[130] | KUZMICHEV D S, CHERNIKOVA A G, KOZODAEV M G, et al. Resistance switching peculiarities in nonfilamentary self-rectified TiN/Ta2O5/Ta and TiN/HfO2/Ta2O5/Ta stacks. Physics Status Solidi-Rapid Research Letters, 2020, 217(18): 1900952. |
[131] | XU Z, LI F, WU C, et al. Ultrathin electronic synapse having high temporal/spatial uniformity and an Al2O3/graphene quantum dots/Al2O3 sandwich structure for neuromorphic computing. NPG Asia Materials, 2019, 11: 18. |
[132] |
MA F, XU Z, LIU Y, et al. Highly-reliable electronic synapse based on Au@Al2O3 core-shell nanoparticles for neuromorphic applications. IEEE Electron Device Letters, 2019, 40(10): 1610.
DOI URL |
[133] |
KWON D E, KIM J, KWON Y J, et al. Area-type electronic bipolar resistive switching of Pt/Al2O3/Si3N3.0/Ti with forming-free, self-rectification, and nonlinear characteristics. Physics Status Solidi-Rapid Research Letters, 2020, 14(8): 2000209.
DOI URL |
[134] |
PARK J, LEE S, YONG K. Photo-stimulated resistive switching of ZnO nanorods. Nanotechnology, 2012, 23(38): 385707.
DOI URL |
[135] |
ZHOU Y, YEW K S, ANG D S, et al. White-light-induced disruption of nanoscale conducting filament in hafnia. Applied Physics Letters, 2015, 107(7): 072107.
DOI URL |
[136] | ZHOU F, ZHOU Z, CHEN J, et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nature Nanotechnology, 2019, 14: 776. |
[137] |
BERA A, PENG H, LOUREMBAM J, et al. A versatile light-switchable nanorod memory: wurtzite ZnO on perovskite SrTiO3. Advanced Functional Materials, 2013, 23(39): 4977.
DOI URL |
[138] | HU D-C, YANG R, JIANG L, et al. Memristive synapses with photoelectric plasticity realized in ZnO1-x/AlOy heterojunction. ACS Applied Materials&Interfaces, 2018, 10(7): 6463. |
[139] |
ZHUGE X, WANG J, ZHUGE F. Photonic synapses for ultrahigh- speed neuromorphic computing. Physics Status Solidi-Rapid Research Letters, 2019, 13(9): 1900082.
DOI URL |
[140] | ZHU J, ZHANG T, YANG Y, et al. A comprehensive review on emerging artificial neuromorphic devices. Applied Physics Reviews, 2020, 7: 011312. |
[141] |
SHAN X, ZHAO C, WANG X, et al. Plasmonic optoelectronic memristor enabling fully light-modulated synaptic plasticity for neuromorphic vision. Advanced Science, 2022, 9(6): 2104632.
DOI URL |
[142] |
HICKMOTT T W. Low-frequency negative resistance in thin anodic oxide films. Journal of Applied Physics, 1962, 33(9): 2669.
DOI URL |
[143] |
CHOI B J, TORREZAN A C, NORRIS K J, et al. Electrical performance and scalability of Pt dispersed SiO2 nanometallic resistance switch. Nano Letters, 2013, 13(7): 3213.
DOI URL |
[144] |
KUZUM D, YU S, WONG H S P. Synaptic electronics: materials, devices and applications. Nanotechnology, 2013, 24(38): 382001.
DOI URL |
[145] | 沈柳枫, 胡令祥, 康逢文, 等. 光电神经形态器件及其应用. 物理学报, 2022, 71(14): 148508. |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[5] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[6] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[7] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[8] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[9] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[10] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[11] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[12] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[13] | 李宗晓, 胡令祥, 王敬蕊, 诸葛飞. 氧化物神经元器件及其神经网络应用[J]. 无机材料学报, 2024, 39(4): 345-358. |
[14] | 鲍可, 李西军. 化学气相沉积法制备智能窗用热致变色VO2薄膜的研究进展[J]. 无机材料学报, 2024, 39(3): 233-258. |
[15] | 胡梦菲, 黄丽萍, 李贺, 张国军, 吴厚政. 锂/钠离子电池硬碳负极材料的研究进展[J]. 无机材料学报, 2024, 39(1): 32-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||