无机材料学报 ›› 2023, Vol. 38 ›› Issue (10): 1149-1162.DOI: 10.15541/jim20230066 CSTR: 32189.14.10.15541/jim20230066

所属专题: 【信息功能】敏感陶瓷(202409) 【信息功能】神经形态材料与器件(202409)

• 综述 • 上一篇    下一篇

面向类脑计算的氧化物忆阻器

诸葛霞1(), 朱仁祥1, 王建民1, 王敬蕊1, 诸葛飞2,3,4,5()   

  1. 1.宁波工程学院 电子与信息工程学院, 宁波 315211
    2.中国科学院 宁波材料技术与工程研究所, 宁波 315201
    3.中国科学院 脑科学与智能技术卓越创新中心, 上海 200031
    4.中国科学院大学 材料与光电研究中心, 北京 100029
    5.浙江大学 温州研究院, 温州 325006
  • 收稿日期:2023-02-09 修回日期:2023-03-01 出版日期:2023-10-20 网络出版日期:2023-03-24
  • 通讯作者: 诸葛飞, 研究员. E-mail: zhugefei@nimte.ac.cn
  • 作者简介:诸葛霞(1979-), 女, 博士, 讲师. E-mail: zhugexia@nbut.edu.cn
  • 基金资助:
    国家自然科学基金(U20A20209);国家自然科学基金(61874125);中国科学院战略性先导专项(XDB32050204);环境友好能源材料国家重点实验室开放基金(20kfhg09);宁波市自然科学基金(2021J139);硅材料国家重点实验室开放基金(SKL2021-03)

Oxide Memristors for Brain-inspired Computing

ZHUGE Xia1(), ZHU Renxiang1, WANG Jianmin1, WANG Jingrui1, ZHUGE Fei2,3,4,5()   

  1. 1. School of Electronic and Information Engineering, Ningbo University of Technology, Ningbo 315211, China
    2. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
    3. Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
    4. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100029, China
    5. Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China
  • Received:2023-02-09 Revised:2023-03-01 Published:2023-10-20 Online:2023-03-24
  • Contact: ZHUGE Fei, professor. E-mail: zhugefei@nimte.ac.cn
  • About author:ZHUGE Xia (1979-), female, PhD, lecturer. E-mail: zhugexia@nbut.edu.cn
  • Supported by:
    National Natural Science Foundation of China(U20A20209);National Natural Science Foundation of China(61874125);Strategic Priority Research Program of Chinese Academy of Sciences(XDB32050204);State Key Laboratory for Environment-Friendly Energy Materials(20kfhg09);Ningbo Natural Science Foundation of China(2021J139);State Key Laboratory of Silicon Materials(SKL2021-03)

摘要:

类脑神经形态计算通过电子或光子器件集成来模拟人脑结构和功能。人工突触是类脑系统中数量最多的计算单元。忆阻器可模拟突触功能, 并具有优异的尺寸缩放性和低能耗, 是实现人工突触的理想元器件。利用欧姆定律和基尔霍夫定律, 忆阻器交叉阵列可执行并行的原位乘累加运算, 从而大幅提升类脑系统处理模拟信号的速度。氧化物制备容易, 和CMOS工艺兼容性强, 是使用最广泛的忆阻器材料。本文梳理了氧化物忆阻器的研究进展, 分别讨论了电控、光电混合调控和全光控忆阻器, 主要聚焦阻变机理、器件结构和性能。电控忆阻器工作一般会产生微结构变化和焦耳热, 将严重影响器件稳定性, 改进器件结构和材料成分可有效改善器件性能。利用光信号调控忆阻器电导, 不仅能降低能耗, 而且可避免产生微结构变化和焦耳热, 从而有望解决稳定性难题。此外, 光控忆阻器能直接感受光刺激, 单器件即可实现感/存/算功能, 可用于研发新型视觉传感器。因此, 全光控忆阻器的实现为忆阻器的研究和应用打开了一扇新窗口。

关键词: 氧化物忆阻器, 光电器件, 人工突触, 类脑神经形态计算, 综述

Abstract:

Brain-inspired neuromorphic computing refers to simulation of the structure and functionality of the human brain via the integration of electronic or photonic devices. Artificial synapses are the most abundant computation element in the brain-inspired system. Memristors are considered to be ideal devices for artificial synapse applications because of their high scalability and low power consumption. Based on Ohm’s law and Kirchhoff’s law, memristor crossbar arrays can perform parallel multiply-accumulate operations in situ, leading to analogue computing with greatly improved speed and energy efficiency. Oxides are most widely used in memristors due to the ease of fabrication and high compatibility with CMOS processes. This work reviews the research progress of oxide memristors for brain-inspired computing, mainly focusing on their resistance switching mechanisms, device structures and performances. These devices fall into three categories: electrical memristors, memristors controlled via both electrical and optical stimuli, and all-optically controlled memristors. The working mechanisms of electrical memristors are commonly related to microstructure change and Joule heat that are detrimental to device stability. The device performance can be improved by optimizing device structure and material composition. Tuning the device conductance with optical signals can avoid microstructure change and Joule heat as well as reducing energy consumption, thus making it possible to address the stability problem. In addition, optically controlled memristors can directly response to external light stimulus enabling integrated sensing-computing-memoring within single devices, which are expected to be used for developing next-generation vision sensors. Hence, the realization of all-optically controlled memristors opens a new window for research and applications of memristors.

Key words: oxide memristor, optoelectronic device, artificial synapse, brain-inspired neuromorphic computing, review

中图分类号: