无机材料学报 ›› 2023, Vol. 38 ›› Issue (1): 32-42.DOI: 10.15541/jim20220384 CSTR: 32189.14.10.15541/jim20220384
所属专题: 【信息功能】敏感陶瓷(202409)
• 专栏:抗疫生物材料(特邀编辑: 杨勇) • 上一篇 下一篇
刘瑶1,2(), 尤勋海1,3, 赵冰1,3, 罗晓莹4(
), 陈星1,2,3(
)
收稿日期:
2022-07-04
修回日期:
2022-08-18
出版日期:
2023-01-20
网络出版日期:
2022-09-15
通讯作者:
陈 星, 教授. E-mail: xingchen@hfut.edu.cn;作者简介:
刘 瑶(1993-), 女, 博士研究生. E-mail: 18691965261@163.com
基金资助:
LIU Yao1,2(), YOU Xunhai1,3, ZHAO Bing1,3, LUO Xiaoying4(
), CHEN Xing1,2,3(
)
Received:
2022-07-04
Revised:
2022-08-18
Published:
2023-01-20
Online:
2022-09-15
Contact:
CHEN Xing, professor. E-mail: xingchen@hfut.edu.cn;About author:
LIU Yao (1993-), female, PhD candidate. E-mail: 18691965261@163.com
Supported by:
摘要:
新冠疫情暴发对全球公共卫生构成了巨大威胁, 病毒的快速、准确诊断对新冠疫情防控具有至关重要的作用。近年来, 以纳米材料为基础的电化学传感技术在快速、高灵敏度/高特异性分子诊断方面显示出巨大的潜力。本文简要介绍了新型冠状病毒(SARS-CoV-2)的结构特征及常规检测方法, 总结了电化学生物检测相关传感特点和机制。在此基础上, 详细评述了金纳米材料、氧化物纳米材料、碳基纳米材料等为基础的电化学传感器用于快速、准确检测新冠病毒的研究进展。最后, 展望了基于电化学传感技术在未来生物分子诊断中的应用。
中图分类号:
刘瑶, 尤勋海, 赵冰, 罗晓莹, 陈星. 功能纳米材料应用于电化学新冠病毒生物传感器的研究进展[J]. 无机材料学报, 2023, 38(1): 32-42.
LIU Yao, YOU Xunhai, ZHAO Bing, LUO Xiaoying, CHEN Xing. Functional Nanomaterials for Electrochemical SRAS-CoV-2 Biosensors: a Review[J]. Journal of Inorganic Materials, 2023, 38(1): 32-42.
Detection method | Time/h | Advantage | Disadvantage |
---|---|---|---|
Reverse transcrition-polymerase chain reaction (RT-PCR) | 4-6 | High sensitivity and reliability Low cost Versatility in sample types | Special instruments Complicated operation Time-consuming |
Enzyme linked immunosorbent assay (ELISA) | 1-3 | Simple operation Low price Fast detection | Low specificity Suitability only for the late stage of the disease |
Surface-enhanced Raman spectroscopy (SERS) | <1 | Simple construction Good repeatability | Specialized SERS active substrates |
Electrochemical detection | <1 | Lower cost Simpler construction Higher specificity Relatively lower sensitivity | Lower clinical trial accuracy |
表1 SARS-CoV-2检测方法比较
Table 1 Comparison of detection methods for SARS-CoV-2 detection
Detection method | Time/h | Advantage | Disadvantage |
---|---|---|---|
Reverse transcrition-polymerase chain reaction (RT-PCR) | 4-6 | High sensitivity and reliability Low cost Versatility in sample types | Special instruments Complicated operation Time-consuming |
Enzyme linked immunosorbent assay (ELISA) | 1-3 | Simple operation Low price Fast detection | Low specificity Suitability only for the late stage of the disease |
Surface-enhanced Raman spectroscopy (SERS) | <1 | Simple construction Good repeatability | Specialized SERS active substrates |
Electrochemical detection | <1 | Lower cost Simpler construction Higher specificity Relatively lower sensitivity | Lower clinical trial accuracy |
图2 基于金纳米材料构建的电化学生物传感器检测新冠病毒的应用
Fig. 2 Electrochemical biosensors based on gold nanomaterials for the detection of SARS-CoV-2 (a) Schematic diagram of probe DNA fixation and target nucleotide hybridization on gold electrode[46]; (b) SEM images of 3D gold nanoneedle structures[47];(c-e) Square wave stripping voltammetric response and corresponding calibration plots of 3D gold nanoneedle modified electrode toward S and ORF1ab genes[47]; (f) SEM and (g) TEM images of PEDOT/AuNPs/AG[48]; (h-i) Nyquist plots and corresponding calibration plots of the PEDOT/AuNPs/AG/BSA modified electrode toward different positive serum concentrations[48]
图3 基于金属氧化物纳米材料构建的电化学传感器检测SARS-CoV-2的应用
Fig. 3 Metal oxide nanomaterials used in electrochemical sensors to detect SARS-CoV-2 (a) Schematic of portable electrochemical biosensor based on probe recognition technology for the detection of SARS-CoV-2 RNA[6]; (b) DPV curves for different concentrations of artificial target for the SARS-CoV-2 biosensor[6]; (c) Resulting calibration plot for lgC vs. DPV response signals[6]; (d) SEM image of the Co-functionalized TNTs[49]; (e) Amperometry response curves of Co-TNT on SARS-CoV-2 S protein of different concentrations[49]; (f) Amperometry response curves of Co-TNT sensor upon exposure to SARS-CoV-2 S protein of different concentrations[49]; (g) FESEM image of antibodies being deposited on ZnO/rGO[5]; (h-i) Nyquist plots and corresponding calibration curve of the ZnO/rGO modified electrode towards N-protein[5] ; Colorful figures are available on website
图4 基于碳纳米材料的电化学生物传感器检测SARS-CoV-2的应用
Fig. 4 Electrochemical biosensors based on carbon nanomaterials for the detection of SARS-CoV-2 (a) Schematic diagram of CBs modified SPE for SARS-CoV-2 detection[50]; (b, c) Electrochemical response signal and corresponding calibration curves of the CBs modified SPE towards S (b) and N (c) protein[50]; (d) Preparation process and SEM image of functionalized carbon nanofiber (CNF) [51]; (e, f) Square wave voltammetric respond (e) and corresponding calibration curves (f) of the the functionalized CNF modified electrode towards nucleocapsid protein at different concentrations[51]; CBs: Carbon black nanomaterials; SPE: Screen printing electrodes; EDC/NHS: 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydro/N-Hydroxy succinimide; Colorful figures are available on website
图5 石墨烯纳米复合材料在新冠病毒检测中的应用
Fig. 5 Graphene nanocomposites used in electrochemical sensors to detect SARS-CoV-2 (a) Schematic diagram of functionalized graphene connected to the corresponding bioreceptors by covalent bonds[52]; (b, c) DPV respond (b) and Nyquist diagram (c) of the electrode at different steps[52]; (d) Surface modification process of reduced graphene oxide nanosheets by carboxyl functionalization[55]; (e) Continuous detection of neo-coronavirus S protein after sensor regeneration[55]. CAb: Capture antibody; DAb: Detector antibody; PI: Polyimide; BSA: Bovine serum albumin: PBA: 1-Pyrenebutyric acid; Fc: Fragment crystallizable; Fab: Fragment of antigen binding; M: mol/L; Colorful figures are available on website
图6 纸基电化学传感器检测SARS-CoV-2的抗体[59]
Fig. 6 Paper-based electrochemical biosensor for diagnosing COVID-19[59] (a) Schematic illustration of the detection procedure of COVID-19; (b) SEM image of the corresponding cross-sectional of GO modified paper; (c, d) Square wave stripping voltammetric responses of SARS-CoV-2 IgG (c) and IgM (d) at different concentrations; (e) linear relationship between Δ current vs logarithmic concentration of SARS-CoV-2 IgG and IgM and their corresponding relationships between Δ current and concentration of SARS-CoV-2 IgG and IgM; Colorful figures are available on website
Material | Method | Detecting object | Limit of detection | Ref. |
---|---|---|---|---|
AuNPs | i-t | RNA or cDNA | N/A | [ |
Gold nanoneedle | SWV | S gene Orf1ab gene | 5.0×10-18 g·μL-1 6.8×10-18 g·μL-1 | [ |
AuNPs/PEDOT | EIS | Positive and negative serum sample | N/A | [ |
Au@Fe3O4/rGO | DPV | RNA | 3×10-18 mol·L-1 | [ |
Co-TiO2 nanotubes | i-t | RBD | 7×10-10 mol·L-1 | [ |
ZnO/rGO | EIS | N protein antigens | 2×10-14 g·mL-1 | [ |
Carbon black nanomaterial | LSV | S protein N protein | 1.9×10-8 g·mL-1 8×10-9 g·mL-1 | [ |
Laser-engraved graphene | LSV | N-protein, S1-IgM S1-IgG C-reactive protein | N/A | [ |
AuNPs/rGO | EIS | S1 protein RBD antibodies | 2.8×10-15 mol·L-1 1.69×10-14 mol·L-1 | [ |
SiO2@UiO-66 | EIS | S protein | 1×10-13 g·mL-1 | [ |
GO | SWV | IgG IgM | 9.6×10-10 g·mL-1 1.4×10-10 g·mL-1 | [ |
Au@Pt/MIL-5(Al) | DPV | N-protein | 8.33×10-12 g·mL-1 | [ |
表2 不同纳米材料构建的电化学传感器检测SARS-CoV-2的性能对比
Table 2 Comparison of SARS-CoV-2 detection performance of electrochemical sensors constructed from different nanomaterials
Material | Method | Detecting object | Limit of detection | Ref. |
---|---|---|---|---|
AuNPs | i-t | RNA or cDNA | N/A | [ |
Gold nanoneedle | SWV | S gene Orf1ab gene | 5.0×10-18 g·μL-1 6.8×10-18 g·μL-1 | [ |
AuNPs/PEDOT | EIS | Positive and negative serum sample | N/A | [ |
Au@Fe3O4/rGO | DPV | RNA | 3×10-18 mol·L-1 | [ |
Co-TiO2 nanotubes | i-t | RBD | 7×10-10 mol·L-1 | [ |
ZnO/rGO | EIS | N protein antigens | 2×10-14 g·mL-1 | [ |
Carbon black nanomaterial | LSV | S protein N protein | 1.9×10-8 g·mL-1 8×10-9 g·mL-1 | [ |
Laser-engraved graphene | LSV | N-protein, S1-IgM S1-IgG C-reactive protein | N/A | [ |
AuNPs/rGO | EIS | S1 protein RBD antibodies | 2.8×10-15 mol·L-1 1.69×10-14 mol·L-1 | [ |
SiO2@UiO-66 | EIS | S protein | 1×10-13 g·mL-1 | [ |
GO | SWV | IgG IgM | 9.6×10-10 g·mL-1 1.4×10-10 g·mL-1 | [ |
Au@Pt/MIL-5(Al) | DPV | N-protein | 8.33×10-12 g·mL-1 | [ |
[1] |
CHU D K W, PAN Y, CHENG S M S, et al. Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clinical Chemistry, 2020, 66(4): 549.
DOI PMID |
[2] |
OROOJI Y, SOHRABI H, HEMMAT N, et al. An overview on SARS-CoV-2 (COVID-19) and other human coronaviruses and their detection capability via amplification assay, chemical sensing, biosensing, immunosensing, and clinical assays. Nano-Micro Letters, 2020, 13(1): 18.
DOI URL |
[3] | SAMSON R, NAVALE G R, DHARNE M S, et al. Biosensors: frontiers in rapid detection of COVID-19. Biotech, 2020, 10(9): 385. |
[4] |
ALAFEEF M, DIGHE K, MOITRA P, et al. Rapid, ultrasensitive, and quantitative detection of SARS-CoV-2 using antisense oligonucleotides directed electrochemical biosensor chip. ACS Nano, 2020, 14(12): 17028.
DOI PMID |
[5] |
HAGHAYEGH F, SALAHANDISH R, HASSANI M, et al. Highly stable buffer-based zinc oxide/reduced graphene oxide nanosurface chemistry for rapid immunosensing of SARS-CoV-2 antigens. ACS Appl. Mater. Interfaces, 2022, 14(8): 10844.
DOI URL |
[6] |
ZHAO H, LIU F, XIE W, et al. Ultrasensitive supersandwich-type electrochemical sensor for SARS-CoV-2 from the infected COVID-19 patients using a smartphone. Sensors and Actuators B Chemical, 2021, 327: 128899.
DOI URL |
[7] |
FALSEY A R, WALSH E E. Novel coronavirus and severe acute respiratory syndrome. Lancet, 2003, 361(9366): 1312.
DOI PMID |
[8] |
ZAKI A M, VANBOHEEMEN S, BESTEBROER T M, et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. New England Journal of Medicine, 2012, 367: 1814.
DOI URL |
[9] |
ZHU N, ZHANG D, WANG W, et al. A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 2020, 382(8): 727.
DOI URL |
[10] |
YAO H, SONG Y, CHEN Y, et al. Molecular architecture of the SARS-CoV-2 virus. Cell, 2020, 183(3): 730.
DOI PMID |
[11] |
CHOUDHRY N, ZHAO X, XU D, et al. Chinese therapeutic strategy for fighting COVID-19 and potential small-molecule inhibitors against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Journal of Medicinal Chemistry, 2020, 63(22): 13205.
DOI URL |
[12] |
THOMS M, BUSCHAUER R, AMEISMEIER M, et al. Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science, 2020, 369(6508): 1249.
DOI PMID |
[13] |
FENG W, NEWBIGGING A M, LE C, et al. Molecular diagnosis of COVID-19: challenges and research needs. Analytical Chemistry, 2020, 92: 10196.
DOI PMID |
[14] |
XIE C B, JIANG L X, HUANG G, et al. Comparison of different samples for 2019 novel coronavirus detection by nucleic acid amplification tests. International Journal of Infectious Diseases, 2020, 93: 264.
DOI PMID |
[15] |
SADIGHBAYAN D, HASANZADEH M, GHAFAR-ZADEH E. Biosensing based on field-effect transistors (FET): recent progress and challenges. Trac-Trends in Analytical Chemistry, 2020, 133: 116067.
DOI URL |
[16] | LIU W, LIU L, KOU G, et al. Evaluation of nucleocapsid and spike protein-based ELISAs for detecting antibodies against SARS-CoV-2. Journal of Clinical Microbiology, 2020, 58(6): e0461. |
[17] |
PENG Y, LIN C, LI Y, et al. Identifying infectiousness of SARS-CoV-2 by ultra-sensitive SnS2 SERS biosensors with capillary effect. Matter, 2022, 5(2): 694.
DOI URL |
[18] |
SITJAR J, LIAO J D, LEE H, et al. Challenges of SERS technology as a non-nucleic acid or -antigen detection method for SARS-CoV-2 virus and its variants. Biosensors & Bioelectronics, 2021, 181: 113153.
DOI URL |
[19] |
YANG Y, PENG Y, LIN C, et al. Human ACE2-functionalized gold "virus-trap" nanostructures for accurate capture of SARS-CoV-2 and single-virus SERS detection. Nano-Micro Letters, 2021, 13(1): 109.
DOI PMID |
[20] |
CHAIBUN T, PUENPA J, NGAMDEE T, et al. Rapid electrochemical detection of coronavirus SARS-CoV-2. Nature Communications, 2021, 12(1): 802.
DOI PMID |
[21] |
KUDR J, MICHALEK P, ILIEVA L, et al. COVID-19: a challenge for electrochemical biosensors. TrAC Trends in Analytical Chemistry, 2021, 136: 116192.
DOI URL |
[22] |
TRAN V V, TRAN N H T, HWANG H S, et al. Development strategies of conducting polymer-based electrochemical biosensors for virus biomarkers: potential for rapid COVID-19 detection. Biosensors & Bioelectronics, 2021, 182: 113192.
DOI URL |
[23] |
EJAZI S A, GHOSH S, ALI N. Antibody detection assays for COVID-19 diagnosis: an early overview. Immunology and Cell Biology, 2020, 99(1): 21.
DOI URL |
[24] | MATHEW D, GILES J R, BAXTER A E, et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science, 2020, 369(6508): 8511. |
[25] |
ONG D, FRAGKOU P C, SCHWEITZER V A, et al. How to interpret and use COVID-19 serology and immunology tests. Clinical Microbiology and Infection, 2021, 27(7): 981.
DOI URL |
[26] |
KIMMEL D W, LEBLANC G, MESCHIEVITZ M E, et al. Electrochemical sensors and biosensors. Analytical Chemistry, 2012, 84(2): 685.
DOI PMID |
[27] | FREW J E, HILL H A. Electrochemical biosensors. Analytical Chemistry, 2010, 39(5): 1747. |
[28] | BALKOURANI G, BROUZGOU A, ARCHONTI M, et al. Emerging materials for the electrochemical detection of COVID-19. Journal of Electroanalytical Chemistry, 2021, 893: 115285. |
[29] |
ANTIOCHIA R. Developments in biosensors for CoV detection and future trends. Biosensors and Bioelectronics, 2020, 173: 112777.
DOI URL |
[30] |
ERDEN P E, KILIÇ E. A review of enzymatic uric acid biosensors based onamperometric detection. Talanta, 2013, 107: 312.
DOI URL |
[31] |
BRETT C M A, OLIVEIRA B A M. Electrochemical sensing in solution-origins, applications and future perspectives. Journal of Solid State Electrochemistry, 2011, 15(7/8): 1487.
DOI URL |
[32] |
GUTH U, VONAU W, ZOSEL J. Recent developments in electrochemical sensor application and technology-a review. Measurement Science and Technology, 2009, 20(4): 042002.
DOI URL |
[33] |
KARIMI-MALEH H, OROOJI Y, KARIMI F, et al. A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosensors & Bioelectronics, 2021, 184: 113252.
DOI URL |
[34] | CHAROENKITAMORN K, TUE PT, CHIKAE M, et al. Gold nanoparticle-labeled electrochemical immunoassay using open circuit potential for human chorionic gonadotropin detection. Electroanalysis, 2018, 30(8): 1766. |
[35] |
RASHED M Z, KOPECHEK J A, PRIDDY M C, et al. Rapid detection of SARS-CoV-2 antibodies using electrochemical impedance- based detector. Biosensors & Bioelectronics, 2021, 171: 112709.
DOI URL |
[36] |
LASSERRE P, BALANSETHUPATHY B, VEZZA V J, et al. SARS-CoV-2 aptasensors based on electrochemical impedance spectroscopy and low-cost gold electrode substrates. Analytical Chemistry, 2022, 94(4): 2126.
DOI PMID |
[37] |
XU H, ZHENG J, LIANG H, et al. Electrochemical sensor for cancer cell detection using calix 8 arene/polydopamine/phosphorene nanocomposite based on host-guest recognition. Sensors and Actuators B-Chemical, 2020, 317: 128193.
DOI URL |
[38] |
SEO G, LEE G, MI J K, et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano, 2020, 14: 5135.
DOI PMID |
[39] |
MOKHTARZADEH A, EIVAZZADEH-KEIHAN R, PASHAZADEH P, et al. Nanomaterial-based biosensors for detection of pathogenic virus. Trends in Analytical Chemistry, 2017, 97: 445.
DOI URL |
[40] |
YUAN F, XIA Y, LU Q, et al. Recent advances in inorganic functional nanomaterials based flexible electrochemical sensors. Talanta, 2022, 244: 123419.
DOI URL |
[41] |
ZHONG C, YANG B, JIANG X, et al. Current progress of nanomaterials in molecularly imprinted electrochemical sensing. Critical Reviews in Analytical Chemistry, 2018, 48(1): 15.
DOI PMID |
[42] |
CHOI H K, LEE M J, SANG N L, et al. Noble metal nanomaterial-based biosensors for electrochemical and optical detection of viruses causing respiratory illnesses. Frontiers in Chemistry, 2021, 9: 672739.
DOI URL |
[43] |
REZAEI B, BOROUJENI MK, ENSAFI A A. Fabrication of DNA, o-phenylenediamine, and gold nanoparticle bioimprinted polymer electrochemical sensor for the determination of dopamine. Biosensors & Bioelectronics, 2015, 66: 490.
DOI URL |
[44] |
XIAO T, HUANG J, WANG D, et al. Au and Au-based nanomaterials: synthesis and recent progress in electrochemical sensor applications. Talanta, 2020, 206: 120210.
DOI URL |
[45] |
JANS H, HUO Q. Gold nanoparticle-enabled biological and chemical detection and analysis. Chemical Society Reviews, 2012, 41(7): 2849.
DOI PMID |
[46] |
TRIPATHY S, SINGH S G. Label-free electrochemical detection of DNA hybridization: a method for COVID-19 diagnosis. Transactions of the Indian National Academy of Engineering, 2020, 5(2): 205.
DOI URL |
[47] |
KASHEFI-KHEYRABADI L, NGUYEN H V, GO A, et al. Rapid, multiplexed, and nucleic acid amplification-free detection of SARS-CoV-2 RNA using an electrochemical biosensor. Biosensors & Bioelectronics, 2021, 195: 113649.
DOI URL |
[48] |
LORENZEN A L, DOS SANTOS A M, DOS SANTOS L P, et al. PEDOT-AuNPs-based impedimetric immunosensor for the detection of SARS-CoV-2 antibodies. Electrochimica Acta, 2022, 404: 139757.
DOI URL |
[49] |
VADLAMANI B S, UPPAL T, VERMA S C, et al. Functionalized TiO2 nanotube-based electrochemical biosensor for rapid detection of SARS-CoV-2. Sensors, 2020, 20(20): 5871.
DOI URL |
[50] |
ARDUINI F, CINTI S, MAZZARACCHIO V, et al. Carbon black as an outstanding and affordable nanomaterial for electrochemical (bio) sensor design. Biosensors and Bioelectronics, 2020, 156: 112033.
DOI URL |
[51] |
EISSA S, ZOUROB M. Development of a low-cost cotton-tipped electrochemical immunosensor for the detection of SARS-CoV-2. Analytical Chemistry, 93(3): 1826.
DOI URL |
[52] |
TORRENTE-RODRÍGUEZ R, LUKAS H, TU J, et al. SARS-CoV-2 rapidplex: a graphene-based multiplexed telemedicine platform for rapid and low-cost COVID-19 diagnosis and monitoring. Matter, 2020, 3: 1981.
DOI URL |
[53] |
LIV L, OBAN G, NAKIBOLU N, et al. A rapid, ultrasensitive voltammetric biosensor for determining SARS-CoV-2 spike protein in real samples. Biosensors & Bioelectronics, 2021, 192: 113497.
DOI URL |
[54] |
HASHEMI S A, BEHBAHAN N, BAHRANI S, et al. Ultra-sensitive viral glycoprotein detection nanosystem toward accurate tracing SARS-CoV-2 in biological/non-biological media. Biosensors & Bioelectronics, 2021, 171: 112731.
DOI URL |
[55] | ALI MA, HU C, JAHAN S, et al. Sensing of COVID-19 antibodies in seconds via aerosol jet nanoprinted reduced-graphene-oxide-coated 3D electrodes. Advanced Materials, 2021, 33(7): 2006647. |
[56] | WITT S, ROGIEN A, WERNER D, et al. Boron doped diamond thin films for the electrochemical detection of SARS-CoV-2 S1 protein. Diamond and Related Materials, 2021, 4: 108542. |
[57] |
MEHMANDOUST M, GUMUS Z P, SOYLAK M, et al. Electrochemical immunosensor for rapid and highly sensitive detection of SARS-CoV-2 antigen in the nasal sample. Talanta, 2022, 240: 123211.
DOI URL |
[58] |
TIAN J, LIANG Z, HU O, et al. An electrochemical dual-aptamer biosensor based on metal-organic frameworks MIL-53 decorated with Au@Pt nanoparticles and enzymes for detection of COVID-19 nucleocapsid protein. Electrochimica Acta, 2021, 387: 138533.
DOI URL |
[59] |
YAKOH A, PIMPITAK U, RENGPIPAT S, et al. Paper-based electrochemical biosensor for diagnosing COVID-19: detection of SARS-CoV-2 antibodies and antigen. Biosensors & Bioelectronics, 2020, 176(14): 112912.
DOI URL |
[60] |
RAZIQ A, KIDAKOVA A, BOROZNJAK R, et al. Development of a portable MIP-based electrochemical sensor for detection of SARS-CoV-2 antigen. Biosensors & Bioelectronics, 2021, 178: 113029.
DOI URL |
[61] |
TORRENTE R, LUKAS H, Tu J, et al. SARS-CoV-2 rapidPlex: a graphene-based multiplexed telemedicine platform for rapid and low-cost COVID-19 diagnosis and monitoring. Matter, 2020, 3: 1981.
DOI URL |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 李世奇, 鲍群群, 胡萍, 施剑林. 基于乙二胺四乙酸插层锌铝双金属氢氧化物的晚期肿瘤抗转移免疫治疗研究[J]. 无机材料学报, 2024, 39(9): 1044-1052. |
[5] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[6] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[7] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[8] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[9] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[10] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[11] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[12] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[13] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[14] | 李宗晓, 胡令祥, 王敬蕊, 诸葛飞. 氧化物神经元器件及其神经网络应用[J]. 无机材料学报, 2024, 39(4): 345-358. |
[15] | 于嫚, 高荣耀, 秦玉军, 艾希成. 上转换发光纳米材料对钙钛矿太阳能电池迟滞效应和离子迁移动力学的影响[J]. 无机材料学报, 2024, 39(4): 359-366. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||