[1] |
LIN X X, ZHANG Y, ZHANG D S, et al. Study on the superhydrophobicity of graphene and its composites. Applied Chemical Industry, 2021, 50(9): 2567-2571.
|
[2] |
ZENG Q H, ZHOU H, HUANG J X, et al. Review on the recent development of durable superhydrophobic materials for practical applications. Nanoscale, 2021, 13(27): 11734-11764.
DOI
PMID
|
[3] |
TONG W, XIONG D S. Bioinspired superhydrophobic materials: progress and functional application. Journal of Inorganic Materials, 2019, 34(11): 1133-1144.
DOI
|
[4] |
DARMANIN T, GUITTARD F. Superhydrophobic and superoleophobic properties in nature. Materials Today, 2015, 18(5): 273-285.
DOI
URL
|
[5] |
PARVATE S, DIXIT P, CHATTOPADHYAY S. Superhydrophobic surfaces: insights from theory and experiment. Journal of Physical Chemistry,B, 2020, 124(8): 1323-1360.
DOI
URL
|
[6] |
SU B, TIAN Y, JIANG L. Bioinspired interfaces with superwettability: from materials to chemistry. Journal of the American Chemical Society, 2016, 138(6): 1727-1748.
DOI
PMID
|
[7] |
ZENG Q H, ZHOU H, HUAANG J X, et al. Review on the recent development of durable superhydrophobic materials for practical applications. Nanoscale, 2021, 13(27): 11734-11764.
DOI
PMID
|
[8] |
ZHAO N, LU X Y, ZHANG X Y, et al. Progress in superhydrophobic surfaces. Progress in Chemistry, 2007, 19(6): 860-870.
|
[9] |
CHEN J, WANG Z H, WANG W, et al. Preparation and application of superhydrophobic surfaces. Materials China, 2013, 32(7): 399-441.
|
[10] |
JOURNET C, MOULINET S, YBERT C, et al. Contact angle measurements on superhydrophobic carbon nanotube forests: effect of fluid pressure. Europhysics Letters, 2005, 71(1): 104-109.
DOI
URL
|
[11] |
BORRAS A, BARRANCO A, GONZALEZ-ELIPE A R. Reversible superhydrophobic to super-hydrophilic conversion of Ag@TiO2 composite nanofiber surfaces. Langmuir, 2008, 24(15): 8021-8026.
DOI
URL
|
[12] |
BORMASHENKO E, STEIN T, WHYMAN G, et al. Wetting properties of the multiscaled nanostructured polymer and metallic superhydrophobic surfaces. Langmuir, 2006, 22(24): 9982-9855.
PMID
|
[13] |
PENG P P, KE Q Q, ZHANG G, et al. Fabrication of microcavity- array superhydrophobic surfaces using an improved template method. Journal of Colloid and Interface Science, 2013, 395: 326-328.
DOI
URL
|
[14] |
XU W, LEELADHAR R, TSAI Y T, et al. Evaporative self-assembly of nanowires on superhydrophobic surfaces of nanotip latching structures. Applied Physics Letters, 2011, 98(7): 073101.
DOI
URL
|
[15] |
WENG Q H, WANG X B, WANG X, et al. Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chemical Society Reviews, 2016, 45(14): 3989-4012.
DOI
PMID
|
[16] |
PAKDEL A, ZHI C Y, BANDO Y, et al. Boron nitride nanosheet coatings with controllable water repellency. ACS Nano, 2011, 5(8): 6507-6515.
DOI
PMID
|
[17] |
YU J, QIN L, HAO Y F, et al. Vertically aligned boron nitride nanosheets: chemical vapor synthesis, ultraviolet light emission, and superhydrophobicity. ACS Nano, 2010, 4(1): 414-422.
DOI
PMID
|
[18] |
WU X M, HE G, WANG L, et al. Combustion synthesis of hexagonal boron nitride nanoplates with high aspect ratio. Ceramics International, 2020, 46(13): 20717-20723.
DOI
URL
|
[19] |
LI H, ZENG X C. Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayer boron nitride sheets. ACS Nano, 2012, 6(3): 2401-2409.
DOI
URL
|
[20] |
CASSIE A B D, BAXTER S. Wettability of porous surfaces. Transactions of The Faraday Society, 1944, 40: 546-551.
DOI
URL
|
[21] |
WANG M K, ZHANG Z Z, LI Y, et al. An eco-friendly one-step method to fabricate superhydrophobic nanoparticles with hierarchical architectures. Chemical Engineering Journal, 2017, 327: 530-538.
DOI
URL
|
[22] |
THANGASAMY P, PARTHEEBAN T, SUDANTHIRAMOORTHY S, et al. Enhanced superhydrophobic performance of BN-MoS2 heterostructure prepared via a rapid, one-pot supercritical fluid processing. Langmuir, 2017, 33(24): 6159-6166.
DOI
URL
|