无机材料学报 ›› 2022, Vol. 37 ›› Issue (10): 1043-1050.DOI: 10.15541/jim20220011 CSTR: 32189.14.10.15541/jim20220011
刘城1,2,3(), 赵倩2,3, 牟志伟2,3, 雷洁红1(
), 段涛2,3(
)
收稿日期:
2022-01-07
修回日期:
2022-03-06
出版日期:
2022-10-20
网络出版日期:
2022-04-07
通讯作者:
段涛, 教授. E-mail: duant@ustc.edu.cn;作者简介:
刘城(1994-), 男, 硕士研究生. E-mail: liucheng536@163.com
基金资助:
LIU Cheng1,2,3(), ZHAO Qian2,3, MOU Zhiwei2,3, LEI Jiehong1(
), DUAN Tao2,3(
)
Received:
2022-01-07
Revised:
2022-03-06
Published:
2022-10-20
Online:
2022-04-07
Contact:
DUAN Tao, professor. E-mail: duant@ustc.edu.cn;About author:
LIU Cheng (1994-), male, Master candidate. E-mail: liucheng536@163.com
Supported by:
摘要:
放射性碘是典型的核裂变产物之一, 吸附-分离-固化放射性碘(129I、131I等)对于核电运营、乏燃料后处理具有重要意义。本研究采用静电纺丝技术和热还原方法, 以一种聚甲基倍半硅氧烷树脂(MK树脂)为原料, 成功制备出一种新型铋基复合纳米纤维膜(Bi@SiOCNF)。该材料以SiOC纤维为基体, 金属单质铋负载在SiOCNF表面与三维网络空间, 对气体碘表现出良好的捕获与固定能力。吸附实验结果表明, 该材料在2 h内可达到最大饱和吸附容量(515.2 mg/g)。XRD、XPS等测试结果表明, 铋基SiOCNF复合纳米纤维膜通过化学吸附与物理吸附机制共同吸附气态碘。热分析表明, Bi@SiOCNF具有良好的热稳定性。该材料在核电站、乏燃料后处理厂对放射性气态碘的捕获、固定和储存等方面具有潜在的应用前景。
中图分类号:
刘城, 赵倩, 牟志伟, 雷洁红, 段涛. 新型铋基SiOCNF复合膜对放射性气态碘的吸附性能[J]. 无机材料学报, 2022, 37(10): 1043-1050.
LIU Cheng, ZHAO Qian, MOU Zhiwei, LEI Jiehong, DUAN Tao. Adsorption Properties of Novel Bismuth-based SiOCNF Composite Membrane for Radioactive Gaseous Iodine[J]. Journal of Inorganic Materials, 2022, 37(10): 1043-1050.
图4 (a~c)Bi@SiOCNF-5, Bi@SiOCNF-8, Bi@SiOCNF-10的SEM照片, (d~e)Bi@SiOCNF-8的EDS能谱和元素分布图, (f~h)Bi@SiOCNF-8的TEM照片
Fig. 4 (a-c) SEM images of Bi@SiOCNF-5, Bi@SiOCNF-8, Bi@SiOCNF-10, (d-e) EDS spectrum and mappings of Bi@SiOCNF-8, and (f-h) TEM images of Bi@SiOCNF-8
图5 Bi@SiOCNF吸附碘蒸气的特性曲线
Fig. 5 Bi@SiOCNF adsorption characteristic curves of iodine vapor (a) Adsorption kinetic curves; (b) Adsorption isotherm curves
Adsorbent | T/℃ | Adsorption Capacity/(mg·g-1) | Ref. |
---|---|---|---|
HT | 40 | 1400 | [ |
PU1 | 70 | 1300 | [24] |
Cu-BTC@PES | 75 | 639 | [ |
Al-O-F | 90 | 49 | [ |
Ag0Z | 100-200 | 156 | [ |
Ag-ETS-2 | 80 | 255 | [ |
Ag@Mon-POF | 70 | 250 | [ |
Bi6O7 | 25 | 285 | [ |
Ag-loaded aerogel | 150 | 410 | [ |
Bi-BP2-O | 200 | 468 | [ |
Bi@SiOCNF-10 | 75 | 515.2 | This work |
表1 不同吸附材料对碘的吸附性能
Table 1 Adsorption performance of different adsorbents for iodine
Adsorbent | T/℃ | Adsorption Capacity/(mg·g-1) | Ref. |
---|---|---|---|
HT | 40 | 1400 | [ |
PU1 | 70 | 1300 | [24] |
Cu-BTC@PES | 75 | 639 | [ |
Al-O-F | 90 | 49 | [ |
Ag0Z | 100-200 | 156 | [ |
Ag-ETS-2 | 80 | 255 | [ |
Ag@Mon-POF | 70 | 250 | [ |
Bi6O7 | 25 | 285 | [ |
Ag-loaded aerogel | 150 | 410 | [ |
Bi-BP2-O | 200 | 468 | [ |
Bi@SiOCNF-10 | 75 | 515.2 | This work |
图7 I-Bi@SiOCNF的(a)XRD图谱, I-Bi@SiOCNF和Bi@SiOCNF的(b) XPS全谱及其(c) Bi4f图谱, (d) I-Bi@SiOCNF的I3d XPS图谱
Fig. 7 (a) XRD pattern of I-Bi@SiOCNF, (b) XPS survey spectra, corresponding (c) Bi4f Spectra of I-Bi@SiOCNF and Bi@SiOCNF and (d) I3d spectra of I-Bi@SiOCNF
图8 (a~c)I-Bi@SiOCNF-5, I-Bi@SiOCNF-8, I-Bi@SiOCNF-10的SEM照片, (d~e)I-Bi@SiOCNF-8的EDS能谱和元素分布图, (f~h)I-Bi@SiOCNF-8的TEM照片
Fig. 8 (a-c) SEM images of I-Bi@SiOCNF-5, I-Bi@SiOCNF-8, I-Bi@SiOCNF-10, (d, e) EDS spectrum and mappings of I-Bi@SiOCNF-8, and (f-h) TEM images of I-Bi@SiOCNF-8
[1] | SOELBERG N R, GARN T G, GREENHALGH M R, et al. Radioactive iodine and krypton control for nuclear fuel reprocessing. facilities. Science and Technology of Nuclear Installations, 2013, 2013: 702496 |
[2] |
SABRI M A, AL-SAYAH M H, SEN S, et al. Fluorescent aminal linked porous organic polymer for reversible iodine capture and sensing. Scientific Reports, 2020, 10(1): 15943.
DOI PMID |
[3] |
UYBA V, SAMOYLOV A, SHINKAREV S. Comparative analysis of the countermeasures taken to mitigate exposure of the public to radioiodine following the Chernobyl and Fukushima accidents: lessons from both accidents. Journal of Radiation Research, 2018, 59(suppl_2): ii40-ii47.
DOI URL |
[4] |
SUNAVALA-DOSSABHOY G. Radioactive iodine: an unappreciated threat to salivary gland function. Oral Diseases, 2018, 24(1/2): 198-201.
DOI URL |
[5] |
FENG Y, WEI G, LIU Y, et al. Crystallization behavior of boron in low-temperature immobilization of iodine waste. Journal of Solid State Chemistry, 2022, 305: 122698.
DOI URL |
[6] |
RILEY B J, VIENNA J D, STRACHAN D M, et al. Materials and processes for the effective capture and immobilization of radioiodine: a review. Journal of Nuclear Materials, 2016, 470: 307-326.
DOI URL |
[7] |
BEGHI I, LIND T, PRASSER H M. Experimental studies on retention of iodine in a wet scrubber. Nuclear Engineering and Design, 2018, 326: 234-243.
DOI URL |
[8] |
HUVE J, RYZHIKOV A, NOUALI H, et al. Porous sorbents for the capture of radioactive iodine compounds: a review. RSC Advances, 2018, 8(51): 29248-29273.
DOI URL |
[9] |
ZHOU J, HAO S, GAO L, et al. Study on adsorption performance of coal based activated carbon to radioactive iodine and stable iodine. Annals of Nuclear Energy, 2014, 72: 237-241.
DOI URL |
[10] |
ALSALBOKH M, FAKERI N, LAWSON S, et al. Adsorption of iodine from aqueous solutions by aminosilane-grafted mesoporous alumina. Chemical Engineering Journal, 2021, 415: 128968.
DOI URL |
[11] |
CHONG S, RILEY B J, KUANG W, et al. Iodine capture with mechanically robust heat-treated Ag-Al-Si-O xerogel sorbents. ACS Omega, 2021, 6(17): 11628-11638.
DOI PMID |
[12] |
LIN G, ZHU L, DUAN T, et al. Efficient capture of iodine by a polysulfide-inserted inorganic NiTi-layered double hydroxides. Chemical Engineering Journal, 2019, 378: 122181.
DOI URL |
[13] |
PAN X, DING C, ZHANG Z, et al. Functional porous organic polymer with high S and N for reversible iodine capture. Microporous and Mesoporous Materials, 2020, 300: 110161.
DOI URL |
[14] |
ASSAAD T, ASSFOUR B. Metal organic framework MIL-101 for radioiodine capture and storage. Journal of Nuclear Materials, 2017, 493: 6-11.
DOI URL |
[15] |
TANG Y, HUANG H, LI J, et al. IL-induced formation of dynamic complex iodide anions in IL@MOF composites for efficient iodine capture. Journal of Materials Chemistry A, 2019, 7(31): 18324-18329.
DOI URL |
[16] | AKIYAMAA D, ISHIIA T, MASAKIA Y, et al. Sorption and desorption of radioactive organic iodine by silver doped zeolite and zeolite X. Journal of Nuclear and Radiochemical Sciences, 2021, 21: 1-6. |
[17] |
REDA A T, ZHANG D, XU X, et al. Bismuth-impregnated aluminum/copper oxide-pillared montmorillonite for efficient vapor iodine sorption. Separation and Purification Technology, 2021, 270: 118848.
DOI URL |
[18] | REDA A T, PAN M, ZHANG D, et al. Bismuth-based materials for iodine capture and storage: a review. Journal of Environmental Chemical Engineering, 2021: 105279. |
[19] |
GU G E, BAE J, PARK H S, et al. Development of the functionalized nanocomposite materials for adsorption/decontamination of radioactive pollutants. Materials, 2021, 14(11): 2896.
DOI URL |
[20] |
PHILIPPOU K, CHRISTOU C N, SOCOLIUC V, et al. Superparamagnetic polyvinylpyrrolidone/chitosan/Fe3O4 electrospun nanofibers as effective U(VI) adsorbents. Journal of Applied Polymer Science, 2021, 138(15): 50212.
DOI URL |
[21] |
LIU S, KANG S, WANG H, et al. Nanosheets-built flowerlike micro/nanostructured Bi2O2.33 and its highly efficient iodine removal performances. Chemical Engineering Journal, 2016, 289: 219-230.
DOI URL |
[22] |
YANG J H, SHIN J M, PARK J J, et al. Novel synthesis of bismuth-based adsorbents for the removal of 129I in off-gas. Journal of Nuclear Materials, 2015, 457: 1-8.
DOI URL |
[23] |
DAS G, SKORJANC T, SHARMA S K, et al. Viologen-based conjugated covalent organic networks via Zincke reaction. Journal of the American Chemical Society, 2017, 139(28): 9558-9565.
DOI URL |
[24] |
WANG Y, SOTZING G A, WEISS R. Sorption of iodine by polyurethane and melamine-formaldehyde foams using iodine sublimation and iodine solutions. Polymer, 2006, 47(8): 2728-2740.
DOI URL |
[25] | ZHAO Q, ZHU L, LIN G, et al. Controllable synthesis of porous Cu-BTC@polymer composite beads for iodine capture. ACS Applied Materials & Interfaces, 2019, 11(45): 42635-42645. |
[26] |
MILLER A, WANG Y. Al-O-F materials as novel adsorbents for gaseous radioiodine capture. Journal of Environmental Radioactivity, 2014, 133: 35-39.
DOI PMID |
[27] |
NAN Y, TAVLARIDES L L, DEPAOLI D W. Adsorption of iodine on hydrogen-reduced silver-exchanged mordenite: experiments and modeling. AIChE Journal, 2017, 63(3): 1024-1035.
DOI URL |
[28] |
WU L, SAWADA J A, KUZNICKI D B, et al. Iodine adsorption on silver-exchanged titania-derived adsorbents. Journal of Radioanalytical and Nuclear Chemistry, 2014, 302(1): 527-532.
DOI URL |
[29] |
KATSOULIDIS A P, HE J, KANATZIDIS M G. Functional monolithic polymeric organic framework aerogel as reducing and hosting media for Ag nanoparticles and application in capturing of iodine vapors. Chemistry of Materials, 2012, 24(10): 1937-1943.
DOI URL |
[30] | CHONG S, RILEY B J, PETERSON J A, et al. Gaseous iodine sorbents: a comparison between Ag-loaded aerogel and xerogel scaffolds. ACS Applied Materials & Interfaces, 2020, 12(23): 26127-26136. |
[31] |
ZOU H, YI F, SONG M, et al. Novel synthesis of Bi-Bi2O3-TiO2-C composite for capturing iodine-129 in off-gas. Journal of Hazardous Materials, 2019, 365: 81-87.
DOI URL |
[32] |
LI G, HUANG Y, LIN J, et al. Effective capture and reversible storage of iodine using foam-like adsorbents consisting of porous boron nitride microfibers. Chemical Engineering Journal, 2020, 382: 122833.
DOI URL |
[1] | 吴光宇, 舒松, 张洪伟, 李建军. 接枝内酯基活性炭增强苯乙烯吸附性能研究[J]. 无机材料学报, 2024, 39(4): 390-398. |
[2] | 任冠源, 李宜冠, 丁冬海, 梁瑞虹, 周志勇. CaBi2Nb2O9铁电薄膜的生长取向调控和性能研究[J]. 无机材料学报, 2024, 39(11): 1228-1234. |
[3] | 谢天, 宋二红. 弹性应变对C、H、O在过渡金属氧化物表面吸附的影响[J]. 无机材料学报, 2024, 39(11): 1292-1300. |
[4] | 晁少飞, 薛艳辉, 吴琼, 伍复发, MUHAMMAD Sufyan Javed, 张伟. MXene异质结Ti-O-H-O电子快速通道促进高效率储钾[J]. 无机材料学报, 2024, 39(11): 1212-1220. |
[5] | 戴乐, 刘洋, 高轩, 王书豪, 宋雅婷, 唐明猛, 刘丽莎, 汪尧进. 浓度梯度掺杂实现BiFeO3薄膜自极化[J]. 无机材料学报, 2024, 39(1): 99-106. |
[6] | 马晓森, 张丽晨, 刘砚超, 汪全华, 郑家军, 李瑞丰. 13X@SiO2合成及其甲苯吸附性能[J]. 无机材料学报, 2023, 38(5): 537-543. |
[7] | 郭春霞, 陈伟东, 闫淑芳, 赵学平, 杨傲, 马文. 埃洛石纳米管负载锆氧化物吸附水中砷的研究[J]. 无机材料学报, 2023, 38(5): 529-536. |
[8] | 王世怡, 冯爱虎, 李晓燕, 于云. Fe3O4负载Ti3C2Tx对Pb(II)的吸附性能研究[J]. 无机材料学报, 2023, 38(5): 521-528. |
[9] | 于业帆, 徐玲, 倪忠斌, 施冬健, 陈明清. 普鲁士蓝/生物炭材料的制备及其氨氮吸附机理[J]. 无机材料学报, 2023, 38(2): 205-212. |
[10] | 凌洁, 周安宁, 王文珍, 贾忻宇, 马梦丹. Cu/Mg比对Cu/Mg-MOF-74的CO2吸附性能的影响[J]. 无机材料学报, 2023, 38(12): 1379-1386. |
[11] | 汤亚, 孙盛睿, 樊佳, 杨庆峰, 董满江, 寇佳慧, 刘阳桥. 粉煤灰衍生水合硅酸钙PEI改性及吸附去除Cu(II)与催化降解有机污染物[J]. 无机材料学报, 2023, 38(11): 1281-1291. |
[12] | 戴洁燕, 冯爱虎, 米乐, 于洋, 崔苑苑, 于云. NaY沸石分子吸附涂层对典型空间污染物的吸附机制研究[J]. 无机材料学报, 2023, 38(10): 1237-1244. |
[13] | 盛丽丽, 常江. 光/磁热Fe2SiO4/Fe3O4双相生物陶瓷及其复合电纺丝膜制备及抗菌性能研究[J]. 无机材料学报, 2022, 37(9): 983-990. |
[14] | 王红宁, 黄丽, 清江, 马腾洲, 黄维秋, 陈若愚. 有机-无机氧化硅空心球的合成及VOCs吸附应用[J]. 无机材料学报, 2022, 37(9): 991-1000. |
[15] | 胡越, 安琳, 韩鑫, 侯成义, 王宏志, 李耀刚, 张青红. RhO2修饰BiVO4薄膜光阳极的制备及其光电催化分解水性能[J]. 无机材料学报, 2022, 37(8): 873-882. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||