| [1] | LIN X X, ZHANG Y, ZHANG D S, et al. Study on the superhydrophobicity of graphene and its composites. Applied Chemical Industry, 2021,  50(9): 2567-2571. | 
																													
																						| [2] | ZENG Q H, ZHOU H, HUANG J X, et al. Review on the recent development of durable superhydrophobic materials for practical applications. Nanoscale, 2021,  13(27): 11734-11764. DOI    
																																																	PMID
 | 
																													
																						| [3] | TONG W, XIONG D S. Bioinspired superhydrophobic materials: progress and functional application. Journal of Inorganic Materials, 2019,  34(11): 1133-1144. DOI
 | 
																													
																						| [4] | DARMANIN T, GUITTARD F. Superhydrophobic and superoleophobic properties in nature. Materials Today, 2015,  18(5): 273-285. DOI    
																																					URL
 | 
																													
																						| [5] | PARVATE S, DIXIT P, CHATTOPADHYAY S. Superhydrophobic surfaces: insights from theory and experiment. Journal of Physical Chemistry,B, 2020,  124(8): 1323-1360. DOI    
																																					URL
 | 
																													
																						| [6] | SU B, TIAN Y, JIANG L. Bioinspired interfaces with superwettability: from materials to chemistry. Journal of the American Chemical Society, 2016,  138(6): 1727-1748. DOI    
																																																	PMID
 | 
																													
																						| [7] | ZENG Q H, ZHOU H, HUAANG J X, et al. Review on the recent development of durable superhydrophobic materials for practical applications. Nanoscale, 2021,  13(27): 11734-11764. DOI    
																																																	PMID
 | 
																													
																						| [8] | ZHAO N, LU X Y, ZHANG X Y, et al. Progress in superhydrophobic surfaces. Progress in Chemistry, 2007,  19(6): 860-870. | 
																													
																						| [9] | CHEN J, WANG Z H, WANG W, et al. Preparation and application of superhydrophobic surfaces. Materials China, 2013,  32(7): 399-441. | 
																													
																						| [10] | JOURNET C, MOULINET S, YBERT C, et al. Contact angle measurements on superhydrophobic carbon nanotube forests: effect of fluid pressure. Europhysics Letters, 2005,  71(1): 104-109. DOI    
																																					URL
 | 
																													
																						| [11] | BORRAS A, BARRANCO A, GONZALEZ-ELIPE A R. Reversible superhydrophobic to super-hydrophilic conversion of Ag@TiO2 composite nanofiber surfaces. Langmuir, 2008,  24(15): 8021-8026. DOI    
																																					URL
 | 
																													
																						| [12] | BORMASHENKO E, STEIN T, WHYMAN G, et al. Wetting properties of the multiscaled nanostructured polymer and metallic superhydrophobic surfaces. Langmuir, 2006,  22(24): 9982-9855. PMID
 | 
																													
																						| [13] | PENG P P, KE Q Q, ZHANG G, et al. Fabrication of microcavity- array superhydrophobic surfaces using an improved template method. Journal of Colloid and Interface Science, 2013, 395: 326-328. DOI    
																																					URL
 | 
																													
																						| [14] | XU W, LEELADHAR R, TSAI Y T, et al. Evaporative self-assembly of nanowires on superhydrophobic surfaces of nanotip latching structures. Applied Physics Letters, 2011,  98(7): 073101. DOI    
																																					URL
 | 
																													
																						| [15] | WENG Q H, WANG X B, WANG X, et al. Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chemical Society Reviews, 2016,  45(14): 3989-4012. DOI    
																																																	PMID
 | 
																													
																						| [16] | PAKDEL A, ZHI C Y, BANDO Y, et al. Boron nitride nanosheet coatings with controllable water repellency. ACS Nano, 2011,  5(8): 6507-6515. DOI    
																																																	PMID
 | 
																													
																						| [17] | YU J, QIN L, HAO Y F, et al. Vertically aligned boron nitride nanosheets: chemical vapor synthesis, ultraviolet light emission, and superhydrophobicity. ACS Nano, 2010,  4(1): 414-422. DOI    
																																																	PMID
 | 
																													
																						| [18] | WU X M, HE G, WANG L, et al. Combustion synthesis of hexagonal boron nitride nanoplates with high aspect ratio. Ceramics International, 2020,  46(13): 20717-20723. DOI    
																																					URL
 | 
																													
																						| [19] | LI H, ZENG X C. Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayer boron nitride sheets. ACS Nano, 2012,  6(3): 2401-2409. DOI    
																																					URL
 | 
																													
																						| [20] | CASSIE A B D, BAXTER S. Wettability of porous surfaces. Transactions of The Faraday Society, 1944,  40: 546-551. DOI    
																																					URL
 | 
																													
																						| [21] | WANG M K, ZHANG Z Z, LI Y, et al. An eco-friendly one-step method to fabricate superhydrophobic nanoparticles with hierarchical architectures. Chemical Engineering Journal, 2017, 327: 530-538. DOI    
																																					URL
 | 
																													
																						| [22] | THANGASAMY P, PARTHEEBAN T, SUDANTHIRAMOORTHY S, et al. Enhanced superhydrophobic performance of BN-MoS2 heterostructure prepared via a rapid, one-pot supercritical fluid processing. Langmuir, 2017,  33(24): 6159-6166. DOI    
																																					URL
 |