无机材料学报 ›› 2019, Vol. 34 ›› Issue (5): 469-477.DOI: 10.15541/jim20180393 CSTR: 32189.14.10.15541/jim20180393
林正得1,2,舒圣程1,2,李傲1,2,吴明亮1,杨明阳1,2,韩钰3,祝志祥3,陈保安3,丁一3,张强3,王强4,戴丹1()
收稿日期:
2018-09-03
修回日期:
2018-11-22
出版日期:
2019-05-20
网络出版日期:
2019-05-14
作者简介:
林正得(1976-), 男, 研究员. E-mail:linzhengde@nimte.ac.cn
基金资助:
Zheng-De LIN1,2,Sheng-Cheng SHU1,2,Ao LI1,2,Ming-Liang WU1,Ming-Yang YANG1,2,Yu HAN3,Zhi-Xiang ZHU3,Bao-An CHEN3,Yi DING3,Qiang ZHANG3,Qiang WANG4,Dan DAI1()
Received:
2018-09-03
Revised:
2018-11-22
Published:
2019-05-20
Online:
2019-05-14
Supported by:
摘要:
石墨烯具有超高的比表面积和优异的力学性能, 是铜基复合材料理想的增强体。传统的粉末冶金工艺很难解决石墨烯在铜基体中的分散问题, 以及石墨烯与铜基体结合性差的难题。随着近些年研究者对石墨烯-铜界面问题深入的探索, 一些新的制备工艺不断出现。本文系统地介绍和对比了近几年石墨烯增强铜基复合材料的制备工艺, 概述了关于石墨烯/铜复合材料力学性能的研究进展, 总结了石墨烯增强铜基复合材料力学性能的机理, 并对未来石墨烯增强铜基复合材料的研究重点进行了展望。
中图分类号:
林正得, 舒圣程, 李傲, 吴明亮, 杨明阳, 韩钰, 祝志祥, 陈保安, 丁一, 张强, 王强, 戴丹. 石墨烯增强铜基复合材料的研究进展[J]. 无机材料学报, 2019, 34(5): 469-477.
Zheng-De LIN, Sheng-Cheng SHU, Ao LI, Ming-Liang WU, Ming-Yang YANG, Yu HAN, Zhi-Xiang ZHU, Bao-An CHEN, Yi DING, Qiang ZHANG, Qiang WANG, Dan DAI. Preparation and Mechanical Property of Graphene-reinforced Copper Matrix Composites[J]. Journal of Inorganic Materials, 2019, 34(5): 469-477.
Processing technique | Processing route | Merits/Demerits |
---|---|---|
PM | Ball milling (ultrasonication) + Hot pressing | Excellent dispersion, good mechanical bonding/higher defect concentration |
CVD | Ball milling + CVD + Hot pressing | Random distribution, in-situ grown grapheme with perfect quality, excellent interfacial bonding/grain growth, low graphene integrity |
ED | Pulse reverse electrodeposition + Annealing | Smooth, highly dense, uniform dispersion, fine grain size |
MLM | Molecular Level Mixing + SPS | Homogeneous dispersion, low defect density after reduction, strong interactions between Cu and graphene |
ARB | Accumulative roll bonding + Hot compaction | Enhanced interfacial bonding, significant grain refinement/ poor plasticity |
表1 为各种制备工艺的技术路线及其优缺点
Table 1 Processing cessing routes and merits/demerits of processing techniques
Processing technique | Processing route | Merits/Demerits |
---|---|---|
PM | Ball milling (ultrasonication) + Hot pressing | Excellent dispersion, good mechanical bonding/higher defect concentration |
CVD | Ball milling + CVD + Hot pressing | Random distribution, in-situ grown grapheme with perfect quality, excellent interfacial bonding/grain growth, low graphene integrity |
ED | Pulse reverse electrodeposition + Annealing | Smooth, highly dense, uniform dispersion, fine grain size |
MLM | Molecular Level Mixing + SPS | Homogeneous dispersion, low defect density after reduction, strong interactions between Cu and graphene |
ARB | Accumulative roll bonding + Hot compaction | Enhanced interfacial bonding, significant grain refinement/ poor plasticity |
Researchers | Processing route | Graphene content | Yield strength/MPa | Tensile strength/MPa | Compression strength/MPa | Bending strength/MPa | |
---|---|---|---|---|---|---|---|
vol% | wt% | ||||||
Ponraj, et al[ | PM | - | 0 | - | - | 214 | - |
- | 1 | - | - | 215 | - | ||
- | 2 | - | - | 234 | - | ||
Li, et al[ | PM+HP | 2.5 | - | - | - | - | 441 |
5 | - | - | - | - | 301 | ||
7.5 | - | - | - | - | 284 | ||
10 | - | - | - | - | 211 | ||
Chen, et al[ | CVD+HP | - | 0 | 87 | 228 | - | - |
- | 0.5 | 290 | 308 | - | - | ||
Hwang, et al[ | MLM+SPS | 0 | - | 138 | 230 | - | - |
0.5 | - | 195 | 271 | - | - | ||
1.0 | - | 268 | 320 | - | - | ||
Liu, et al[ | ARB | - | - | - | 496 | - | - |
表2 石墨烯增强铜基复合材料的力学性能
Table 2 Mechanical properties of graphene-reinforced copper matrix composites
Researchers | Processing route | Graphene content | Yield strength/MPa | Tensile strength/MPa | Compression strength/MPa | Bending strength/MPa | |
---|---|---|---|---|---|---|---|
vol% | wt% | ||||||
Ponraj, et al[ | PM | - | 0 | - | - | 214 | - |
- | 1 | - | - | 215 | - | ||
- | 2 | - | - | 234 | - | ||
Li, et al[ | PM+HP | 2.5 | - | - | - | - | 441 |
5 | - | - | - | - | 301 | ||
7.5 | - | - | - | - | 284 | ||
10 | - | - | - | - | 211 | ||
Chen, et al[ | CVD+HP | - | 0 | 87 | 228 | - | - |
- | 0.5 | 290 | 308 | - | - | ||
Hwang, et al[ | MLM+SPS | 0 | - | 138 | 230 | - | - |
0.5 | - | 195 | 271 | - | - | ||
1.0 | - | 268 | 320 | - | - | ||
Liu, et al[ | ARB | - | - | - | 496 | - | - |
[1] |
RAJKOVIC V, BOZIC D, JOVANOVIC M T . Properties of copper matrix reinforced with various size and amount of Al2O3 particles. Journal of Materials Processing Tech., 2008,200(1/2/3):106-114.
DOI URL |
[2] |
IBRAHIM I A, MOHAMED F A, LAVERNIA E J . Paniculate reinforced metal matrix composites—a review. Journal of Materials Science, 1991,26(5):1137-1156.
DOI URL |
[3] |
IZMAILOV V V, USHAKOVA I N, DROZDOVA E I , et al. Electrical and tribological properties of composite material with copper matrix reinforced by superelastic hard carbon. Journal of Friction & Wear, 2016,37(3):253-258.
DOI URL |
[4] |
RAJKOVIC V, BOZIC D, JOVANOVIC M T . Properties of copper matrix reinforced with nano- and micro-sized Al2O3 particles. Materials Characterization, 2008,459(1/2):177-184.
DOI URL |
[5] | TENG L, CAIJU L I, YUAN Q , et al. Progress of carbon nanotubes reinforced copper matrix composites. Mater. Rev., 2014,28(7):16-19. |
[6] |
BOZIC D, STASIC J, DIMCIC B , et al. Multiple strengthening mechanisms in nanoparticle-reinforced copper matrix composites. Bulletin of Materials Science, 2011,34(2):217-226.
DOI URL |
[7] |
MCDANELS D L, JECH R W, WEETON J W . Stress-strain Behavior of Tungsten-fiber-reinforced Copper Composites. National Aeronautics And Space Administration Cleveland Oh Lewis Research Center, 1963.
DOI URL |
[8] |
MAI Y J, CHEN F X, LIAN W Q , et al. Preparation and tribological behavior of copper matrix composites reinforced with nickel nanoparticles anchored graphene nanosheets. Journal of Alloys and Compounds, 2018,756:1-7.
DOI URL |
[9] |
GUI C X, ZHAO X H, HUA X U , et al. Study and development of carbon fiber reinforced copper matrix coposites. Journal of Hebei University of Technology, 2002,31(6):43-48.
DOI URL |
[10] |
XIA L, JIA B, ZENG J , et al. Wear and mechanical properties of carbon fiber reinforced copper alloy composites. Materials Characterization, 2009,60(5):363-369.
DOI URL |
[11] |
BAKSHI S R, LAHIRI D, AGARWAL A . Carbon nanotube reinforced metal matrix composites - a review. Metallurgical Reviews, 2010,55(1):41-64.
DOI URL |
[12] |
LIM B, KIM C, KIM B , et al. The effects of interfacial bonding on mechanical properties of single-walled carbon nanotube reinforced copper matrix nanocomposites. Nanotechnology, 2006,17(23):5759-5764.
DOI URL |
[13] |
NOVOSELOV K S, GEIM A K, MOROZOV S V , et al. Electric field effect in atomically thin carbon films. Science, 2004,306(5696):666-669.
DOI URL PMID |
[14] |
KAMALI A R, FRAY D J . Large-scale preparation of graphene by high temperature insertion of hydrogen into graphite. Nanoscale, 2015,7(26):11310-11320.
DOI URL PMID |
[15] |
SUN H, LI X, LI Y , et al. High-quality monolithic graphene films via laterally stitched growth and structural repair of isolated flakes for transparent electronics. Chemistry of Materials, 2017,29(18):7808-7815.
DOI URL |
[16] |
VLASSIOUK I, SMIRNOV S, IVANOV I , et al. Electrical and thermal conductivity of low temperature CVD graphene: the effect of disorder. Nanotechnology, 2011, 22(27): 275716-1-9.
DOI URL PMID |
[17] |
KUMAR R, SINGH R K, DUBEY P K , et al. Pressure-dependent synthesis of high-quality few-layer graphene by plasma-enhanced arc discharge and their thermal stability. Journal of Nanoparticle Research, 2013,15(9):1847-1857.
DOI URL |
[18] |
AKINWANDE D, BRENNAN C J, BUNCH J S , et al. A review on mechanics and mechanical properties of 2D materials—graphene and beyond. Extreme Mechanics Letters, 2017,13:42-77.
DOI URL |
[19] |
DUTKIEWICZ J, OZGA P, MAZIARZ W , et al. Microstructure and properties of bulk copper matrix composites strengthened with various kinds of graphene nanoplatelets. Materials Science & Engineering A, 2015,628:124-134.
DOI URL |
[20] |
WANG S, ZHANG Y, ABIDI N , et al. Wettability and surface free energy of graphene films. Langmuir, 2009,25(18):11078-11081.
DOI URL PMID |
[21] |
DAS S, LAHIRI D, LEE D Y , et al. Measurements of the adhesion energy of graphene to metallic substrates. Carbon, 2013,59(7):121-129.
DOI URL |
[22] |
PONRAJ N V, AZHAGURAJAN A, VETTIVEL S C , et al. Graphene nanosheet as reinforcement agent in copper matrix composite by using powder metallurgy method. Surfaces & Interfaces, 2017,6:190-196.
DOI URL |
[23] | LI JING-FU, ZHANG L, XIAO J K , et al. Sliding wear behavior of copper-based composites reinforced with graphene nanosheets and graphite. Transactions of Nonferrous Metals Society of China, 2015,25(10):3354-3362. |
[24] |
RHO H, LEE S, BAE S , et al. Three-dimensional porous copper- graphene heterostructures with durability and high heat dissipation performance. Scientific Reports, 2015, 5: 12710-1-7.
DOI URL PMID |
[25] |
CHEN Y, ZHANG X, LIU E , et al. Fabrication of in-situ grown graphene reinforced Cu matrix composites. Scientific Reports, 2016, 6: 19363-1-9.
DOI URL PMID |
[26] |
PAVITHRA C L, SARADA B V, RAJULAPATI K V , et al. A new electrochemical approach for the synthesis of copper-graphene nanocomposite foils with high hardness. Sci. Rep., 2014, 4: 4049- 1-7.
DOI URL PMID |
[27] |
JAGANNADHAM K . Thermal conductivity of copper-graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets. Metallurgical and Materials Transactions B, 2011,43(2):316-324.
DOI URL |
[28] |
HWANG J, YOON T, JIN S H , et al. Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv. Mater., 2013,25(46):6724-6729.
DOI URL PMID |
[29] | WANG L D, CUI Y, LI B , et al. High apparent strengthening efficiency for reduced graphene oxide in copper matrix composites produced by molecule-lever mixing and high-shear mixing. RSC Advances, 2015,5(63):51193-51200. |
[30] |
ZHAO C . Enhanced strength in reduced graphene oxide/nickel composites prepared by molecular-level mixing for structural applications. Applied Physics A, 2015,118(2):409-416.
DOI URL |
[31] | HAUSNER H H. Modern Developments in Powder Metallurgy. New York: Plenum Press, 1973. |
[32] |
ZABIHI M, TOROGHINEJAD M R, SHAFYEI A . Application of powder metallurgy and hot rolling processes for manufacturing aluminum/alumina composite strips. Materials Science & Engineering A Structural Materials Properties Microstructure & Processing, 2013,560:567-574.
DOI URL |
[33] |
ELSAYED A, UMEDA J, KONDOH K . The production of powder metallurgy hot extruded Mg-Al-Mn-Ca alloy with high strength and limited anisotropy. Magnesium Technology, 2011,2016:475-480.
DOI URL |
[34] |
KOZBIAL A, LI Z, CONAWAY C , et al. Study on the surface energy of graphene by contact angle measurements. Langmuir, 2014,30(28):8598-8606.
DOI URL PMID |
[35] |
SEO J, CHANG W S, KIM T S . Adhesion improvement of graphene/copper interface using UV/ozone treatments. Thin Solid Films, 2015,584:170-175.
DOI URL |
[36] |
GAO X, YUE H, GUO E , et al. Mechanical properties and thermal conductivity of graphene reinforced copper matrix composites. Powder Technology, 2016,301:601-607.
DOI URL |
[37] |
CHU K, JIA C . Enhanced strength in bulk graphene-copper composites. Physica Status Solidi, 2014,211(1):184-190.
DOI |
[38] |
LI Z, WU P, WANG C , et al. Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources. ACS Nano, 2011,5(4):3385-3390.
DOI URL PMID |
[39] |
SUN Z, YAN Z, YAO J , et al. Growth of graphene from solid carbon sources. Nature, 2010,468(7323):549-552.
DOI URL PMID |
[40] |
WU T, LIU Z, CHEN G , et al. A study of the growth-time effect on graphene layer number based on a Cu-Ni bilayer catalyst system. RSC Advances, 2016,6(28):23956-23960.
DOI URL |
[41] |
NEGISHI R, HIRANO H, OHNO Y , et al. Thickness control of graphene overlayer via layer-by-layer growth on graphene templates by chemical vapor deposition. Japanese Journal of Applied Physics, 2011,50:1271-1295.
DOI URL |
[42] | ISMACH A, DRUZGALSKI C, PENWELL S , et al. Direct Chemical Vapor Deposition of Single and Few--graphene Layers on Dielectric Surfaces. APS Meeting Abstracts. 2010. |
[43] |
QU D, LI F Z, ZHANG H B , et al. Preparation of graphene nanosheets/copper composite by spark plasma sintering. Advanced Materials Research, 2014,833:276-279.
DOI URL |
[44] |
LIU X, WEI D, ZHUANG L , et al. Fabrication of high-strength graphene nanosheets/Cu composites by accumulative roll bonding. Materials Science & Engineering A, 2015,642:1-6.
DOI URL |
[45] |
SAITO Y, UTSUNOMIYA H, TSUJI N , et al. Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process. Acta Materialia, 1999,47(2):579-583.
DOI URL |
[46] | HU Z, TONG G, LIN D , et al. Graphene-reinforced metal matrix nanocomposites-a review. Materials Science and Technology, 2016,32(9):930-953. |
[47] |
KIM W, RIIKONEN J, ARPIAINEN S , et al. Growth of CVD graphene on copper by rapid thermal processing. MRS Proceedings, 2012,1451:27-32.
DOI URL |
[48] |
KIM W J, LEE T J, HAN S H . Multi-layer graphene/copper composites: preparation using high-ratio differential speed rolling, microstructure and mechanical properties. Carbon, 2014,69(4):55-65.
DOI |
[49] |
PAVITHRA C L P, SARADA B V, RAJULAPATI K V , et al. Process optimization for pulse reverse electrodeposition of graphene- reinforced copper nanocomposites. Advanced Manufacturing Processes, 2015,31(11):1439-1446.
DOI URL |
[50] |
ZHANG D, ZHAN Z . Strengthening effect of graphene derivatives in copper matrix composites. Journal of Alloys & Compounds, 2016,654:226-233.
DOI URL |
[51] | BARTOLUCCI S F, PARAS J, RAFIEE M A , et al. Graphene- aluminum nanocomposites. Materials Science & Engineering A, 2011,528(27):7933-7937. |
[52] | ZHU W, CHANG Q, CHEN L , et al. Preparation and properties of reduced graphene oxide reinforced copper matrix composites. Journal of Wuhan University of Science & Technology, 2018,41(1):37-43. |
[53] |
PENG Y, HU Y, HAN L , et al. Ultrasound-assisted fabrication of dispersed two-dimensional copper/reduced graphene oxide nanosheets nanocomposites. Composites Part B, 2014,58(3):473-477.
DOI URL |
[54] |
CHEN X, TAO J, YI J , et al. Strengthening behavior of carbon nanotube-graphene hybrid in copper matrix composite. Materials Science & Engineering A, 2018,718:427-436.
DOI URL |
[55] |
CUI YE, WANG LIDONG, CAO GUOJIAN , et al. Effect of ball milling on the defeat of few-layer graphene and properties of copper matrix composites. Acta Metallurgica Sinica, 2014,27(5):937-943.
DOI URL |
[56] |
LI M X, XIE J, LI Y D , et al. Reduced graphene oxide dispersed in copper matrix composites: facile preparation and enhanced mechanical properties. Physica Status Solidi, 2015,212(10):2154-2161.
DOI URL |
[57] |
XIONG D B, CAO M, GUO Q , et al. Graphene-and-copper artificial nacre fabricated by a preform impregnation process: bioinspired strategy for strengthening-toughening of metal matrix composite. ACS Nano, 2015,9(7):6934-6943.
DOI URL PMID |
[58] |
ZHANG X, SHI C, LIU E , et al. Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network. Nanoscale, 2017,9(33):11929-11938.
DOI URL PMID |
[59] |
TU J, WANG N, YANG Y , et al. Preparation and properties of TiB2 nanoparticle reinforced copper matrix composites by in situ processing. Materials Letters, 2002,52(6):448-452.
DOI URL |
[60] |
BAIG Z, MAMAT O, MUSTAPHA M . Recent progress on the dispersion and the strengthening effect of carbon nanotubes and graphene-reinforced metal nanocomposites: a review. Critical Reviews in Solid State and Materials Sciences, 2018,43(1):1-46.
DOI URL |
[61] |
TAYA M, ARSENAULT R . A comparison between a shear lag type model and an eshelby type model in predicting the mechanical properties of a short fiber composite. Scripta Metallurgica, 1987,21(3):349-354.
DOI URL |
[62] |
ZHAO P, JI S . Refinements of shear-lag model and its applications. Tectonophysics, 1997,279(1-4):37-53.
DOI URL |
[63] |
TANG Y, YANG X, WANG R , et al. Enhancement of the mechanical properties of graphene-copper composites with graphene- nickel hybrids. Materials Science and Engineering: A, 2014,599:247-254.
DOI URL |
[64] |
TJONG S C . Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Materials Science and Engineering: R: Reports, 2013,74(10):281-350.
DOI URL |
[65] |
ZHANG D, ZHAN Z . Preparation of graphene nanoplatelets- copper composites by a modified semi-powder method and their mechanical properties. Journal of Alloys and Compounds, 2016,658:663-671.
DOI URL |
[66] |
MILLER W S, HUMPHREYS F J . Strengthening mechanisms in particulate metal matrix composites. Scripta Metallurgica et Materialia, 1991,25(1):33-38.
DOI URL |
[67] |
MOCKO J L SARRAO, et al. Microhardness of the YbxY1-xInCu4 alloy system: the influence of electronic structure on hardness. Journal of Physics: Condensed Matter, 15(50):8719-8723.
DOI URL |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[5] | 范武刚, 曹雄, 周响, 李玲, 赵冠楠, 张兆泉. 8YSZ陶瓷在模拟压水堆水环境中的耐腐蚀性能[J]. 无机材料学报, 2024, 39(7): 803-809. |
[6] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[7] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[8] | 孙海洋, 季伟, 王为民, 傅正义. TiB-Ti周期序构复合材料设计、制备及性能研究[J]. 无机材料学报, 2024, 39(6): 662-670. |
[9] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[10] | 刘国昂, 王海龙, 方成, 黄飞龙, 杨欢. B4C含量对(Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C陶瓷力学性能及抗氧化性能的影响[J]. 无机材料学报, 2024, 39(6): 697-706. |
[11] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[12] | 粟毅, 史扬帆, 贾成兰, 迟蓬涛, 高扬, 马青松, 陈思安. 浆料浸渍辅助PIP工艺制备C/HfC-SiC复合材料的微观结构及性能研究[J]. 无机材料学报, 2024, 39(6): 726-732. |
[13] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[14] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[15] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||