无机材料学报 ›› 2019, Vol. 34 ›› Issue (5): 461-468.DOI: 10.15541/jim20180374 CSTR: 32189.14.10.15541/jim20180374
• 综述 • 下一篇
收稿日期:
2018-08-15
修回日期:
2018-11-29
出版日期:
2019-05-20
网络出版日期:
2019-05-14
作者简介:
孙亚平(1987-), 女, 博士. E-mail:ypsun0717@163.com
基金资助:
Ya-Ping SUN,Hong-Long WANG,Jian CHU,Xu WANG,She-Qi PAN,Ming ZHANG()
Received:
2018-08-15
Revised:
2018-11-29
Published:
2019-05-20
Online:
2019-05-14
Supported by:
摘要:
高放废物(HLW)在深地质处置后, 其中的放射性核素有可能浸出并伴随地下水循环进入人类环境。这是固化体中放射性核素进入生物圈最可能的途径, 因此HLW固化体的化学稳定性是固化基材筛选的主要依据。陶瓷固化体作为第二代HLW固化体, 具有长程有序的特点, 相比玻璃固化体, 更容易定量表征, 这对于固化体浸出机理的研究有着重要的意义。然而陶瓷固化体的浸出机理与评价方法研究都处于起步阶段, 也缺乏被处置库接收的标准。为规范/建全陶瓷固化体化学稳定性评价方法, 认识放射性核素的浸出机制, 本文概述了核废物固化体化学稳定性研究方法、研究重点; 总结了相关陶瓷的水热蚀变研究现状, 分析了其中核素的浸出率; 探讨了影响因素及其影响方式; 最后归纳了目前提出的浸出机制以及存在的问题。
中图分类号:
孙亚平, 王洪龙, 褚健, 王绪, 潘社奇, 张铭. 陶瓷固化体的浸出行为及其机理[J]. 无机材料学报, 2019, 34(5): 461-468.
Ya-Ping SUN, Hong-Long WANG, Jian CHU, Xu WANG, She-Qi PAN, Ming ZHANG. Leaching Behavior and Mechanism of Ceramic Waste Forms[J]. Journal of Inorganic Materials, 2019, 34(5): 461-468.
Parameters | Glass | Ceramic |
---|---|---|
Loading of waste/wt% | 10-30 | 15-30 |
Density/(g·cm-3) | 2.5-2.8 | 3.0-5.8 |
Leach rate/(g·cm-2·d-1) | 10-4-10-7 | 10-6-10-10 |
Anti-pressure ability | Low | High |
Radiation tolerance/Gy | 10-9 | ~10-9 |
表1 玻璃固化和陶瓷固化的优缺点比较[7]
Table 1 Advantages and disadvantages of glass immobilization and ceramic immobilization[7]
Parameters | Glass | Ceramic |
---|---|---|
Loading of waste/wt% | 10-30 | 15-30 |
Density/(g·cm-3) | 2.5-2.8 | 3.0-5.8 |
Leach rate/(g·cm-2·d-1) | 10-4-10-7 | 10-6-10-10 |
Anti-pressure ability | Low | High |
Radiation tolerance/Gy | 10-9 | ~10-9 |
Mineral | Formula | Immobilized nuclidea |
---|---|---|
Zircon | ZrSiO4 | An |
Titanite | CaTiSiO5 | Ln, An |
Apatite | Ca5(PO4)3(OH, F, O) | U, Th, REE, I, Cs |
Monazite | CePO4 | Ce, La, Eu, Gd, U, LREE |
Xenotime | YPO4 | HREE |
Pyrochlore | CaUTi2O7 | Ln, An |
Baddeleyite | ZrO2 | Ln, An |
Perovskite | CaTiO3 | Sr, REE, Fe, Na, An |
Zirconolite | CaZrTi2O7 | Ln, An, Fe, Ni, Cr, Zr |
Brannerite | UTi2O6 | Ln, An |
Rutile | TiO2 | Zr |
Alkali Psilomelane | BaA12Ti6O16 | Cs, Sr, Ba, Rb, A1 |
表2 陶瓷固化体的主要矿相[8]
Table 2 Main mineral of ceramic waste forms[8]
Mineral | Formula | Immobilized nuclidea |
---|---|---|
Zircon | ZrSiO4 | An |
Titanite | CaTiSiO5 | Ln, An |
Apatite | Ca5(PO4)3(OH, F, O) | U, Th, REE, I, Cs |
Monazite | CePO4 | Ce, La, Eu, Gd, U, LREE |
Xenotime | YPO4 | HREE |
Pyrochlore | CaUTi2O7 | Ln, An |
Baddeleyite | ZrO2 | Ln, An |
Perovskite | CaTiO3 | Sr, REE, Fe, Na, An |
Zirconolite | CaZrTi2O7 | Ln, An, Fe, Ni, Cr, Zr |
Brannerite | UTi2O6 | Ln, An |
Rutile | TiO2 | Zr |
Alkali Psilomelane | BaA12Ti6O16 | Cs, Sr, Ba, Rb, A1 |
Sample | State | Temperature/ ℃ | (SA/V)/ (m-1·g-1) | Duration time/d |
---|---|---|---|---|
MCC-1 | Static | 40, 70, 90 | 10 | 3, 7, 14, 28 |
MCC-2 | Static | 150, 200, 250 | 10 | 3, 7, 14, 28 |
MCC-3 | Static | 90, 150 | 680 | |
MCC-4 | Dynamic | 75 | ||
PCT-A | Static | 90 | 1000 | 7 |
PCT-B | Static | 90 | 1000b | 28 |
PCT-C | Static | 40, 70, 90 | 1000b | 28 |
PCT-D | Static | 90 | 1000b | 56, 182, 364… |
PCT-E | Static | 40, 70, 90 | 1000b | 56, 182, 364… |
表3 核废物固化体的浸出实验标准
Table 3 Standard leaching test methods for nuclear waste forms
Sample | State | Temperature/ ℃ | (SA/V)/ (m-1·g-1) | Duration time/d |
---|---|---|---|---|
MCC-1 | Static | 40, 70, 90 | 10 | 3, 7, 14, 28 |
MCC-2 | Static | 150, 200, 250 | 10 | 3, 7, 14, 28 |
MCC-3 | Static | 90, 150 | 680 | |
MCC-4 | Dynamic | 75 | ||
PCT-A | Static | 90 | 1000 | 7 |
PCT-B | Static | 90 | 1000b | 28 |
PCT-C | Static | 40, 70, 90 | 1000b | 28 |
PCT-D | Static | 90 | 1000b | 56, 182, 364… |
PCT-E | Static | 40, 70, 90 | 1000b | 56, 182, 364… |
Ceramic | Hydration Layer | Second Phase | |||
---|---|---|---|---|---|
Thickness | Method | Constituent | Method | ||
Titanite[ | 100 nm~ | SIMS | TiO2, etc | EDX | |
Zicon[ | ~30 μm~ | EMP | m/t-ZrO2 | EMP | |
Zirconolite[ | 1-90 nm | Calcalationc | Ti-, Zr(OH)4 | ICP-MS | |
Monazite[ | (Sub) nm | BSE | Rhabdophane | Raman | |
Pyrochlore[ | Brannerite, rutile | XRD | |||
Apatite[ | APO4 |
表4 陶瓷水热蚀变水化层和第二相
Table 4 The reaction layer and second phase upon ceramics after hydrothermal alteration
Ceramic | Hydration Layer | Second Phase | |||
---|---|---|---|---|---|
Thickness | Method | Constituent | Method | ||
Titanite[ | 100 nm~ | SIMS | TiO2, etc | EDX | |
Zicon[ | ~30 μm~ | EMP | m/t-ZrO2 | EMP | |
Zirconolite[ | 1-90 nm | Calcalationc | Ti-, Zr(OH)4 | ICP-MS | |
Monazite[ | (Sub) nm | BSE | Rhabdophane | Raman | |
Pyrochlore[ | Brannerite, rutile | XRD | |||
Apatite[ | APO4 |
Ref. | Liquid | Temperature/℃ | Pressure/Pa | The influence mode of pressure on Zircon | Conclusion |
---|---|---|---|---|---|
[30] | 0.1 mol/L HCl | 400 | 0-1.5×108 | No significant change of IR | Special SiO2 structure appears under 2.5 kbar |
2.5×108 | The IR peak at 1050 cm-1 splitting into 1049 cm-1 and 1087 cm-1 | ||||
[31] | 2 mol/L Na2CO3 | 400 | 0 | 33.1×10-7 mol/g 206Pb, 101×10-7 mol/g 238U | Pressure may accelerate the penetration of liquid into zircon matrix at 400 ℃ |
1×108 | 11.4×10-7 mol/g 206Pb, 19.2×10-7 mol/g 238U | ||||
5×108 | 0.18×10-7 mol/g 206Pb, 82.0×10-7 mol/g 238U | ||||
800 | 1×108 | 0.67×10-7 mol/g 206Pb, 126.0×10-7 mol/g 238U | Little variation of U in zircon, but significant variation for Pb | ||
5×108 | 0.68×10-7 mol/g 206Pb, 92.4×10-7 mol/g238U |
表5 压力对锆石蚀变的影响
Table 5 Effect of pressure on alteration upon zircon
Ref. | Liquid | Temperature/℃ | Pressure/Pa | The influence mode of pressure on Zircon | Conclusion |
---|---|---|---|---|---|
[30] | 0.1 mol/L HCl | 400 | 0-1.5×108 | No significant change of IR | Special SiO2 structure appears under 2.5 kbar |
2.5×108 | The IR peak at 1050 cm-1 splitting into 1049 cm-1 and 1087 cm-1 | ||||
[31] | 2 mol/L Na2CO3 | 400 | 0 | 33.1×10-7 mol/g 206Pb, 101×10-7 mol/g 238U | Pressure may accelerate the penetration of liquid into zircon matrix at 400 ℃ |
1×108 | 11.4×10-7 mol/g 206Pb, 19.2×10-7 mol/g 238U | ||||
5×108 | 0.18×10-7 mol/g 206Pb, 82.0×10-7 mol/g 238U | ||||
800 | 1×108 | 0.67×10-7 mol/g 206Pb, 126.0×10-7 mol/g 238U | Little variation of U in zircon, but significant variation for Pb | ||
5×108 | 0.68×10-7 mol/g 206Pb, 92.4×10-7 mol/g238U |
Ref. | Radiated material | Effect of radiation damage on leaching rate | Conclusion |
---|---|---|---|
[35] | Incorporate radionuclides with short half-lives, 238Pu (87.7 years) and 244Cm (17.6 years) | The leaching rates (×10-3, g/(m2?d) of synthetic rock containing 1wt% Cm is 100 times of that containing 4×10-4wt% Cm | Effective |
Compared the samples containing 238Pu (regard as irradiated damage) with samples containing 239Pu (2.41×104 years half-life, regard as no-radiation damage), the leaching rates of Pyrochlore (12.35wt% PuO2, 20.82wt% UO2), Pyrochlore-Rich Baseline (1.88wt% PuO2, 23.67wt% UO2), Zirconolite (7.39wt% PuO2) appear with approximately equal (3.2×10-4 g/(m2?d)) | Little effective | ||
[36] | Natural minerals containing radionuclides | The leaching rate of Zr from irradiated zircon (1.8×10-2 g/(m2?d) is 10-100 times than that of undamaged zircon | Effective |
[37] | Accelerator ion implantation | The dissolution rate of pyrochlore bombarded by heavy ion is 50 times higher than that of non-bombarded | Effective |
表6 含辐照损伤的陶瓷化学稳定性研究总结
Table 6 Chemical durability study of ceramic containing radiation damage
Ref. | Radiated material | Effect of radiation damage on leaching rate | Conclusion |
---|---|---|---|
[35] | Incorporate radionuclides with short half-lives, 238Pu (87.7 years) and 244Cm (17.6 years) | The leaching rates (×10-3, g/(m2?d) of synthetic rock containing 1wt% Cm is 100 times of that containing 4×10-4wt% Cm | Effective |
Compared the samples containing 238Pu (regard as irradiated damage) with samples containing 239Pu (2.41×104 years half-life, regard as no-radiation damage), the leaching rates of Pyrochlore (12.35wt% PuO2, 20.82wt% UO2), Pyrochlore-Rich Baseline (1.88wt% PuO2, 23.67wt% UO2), Zirconolite (7.39wt% PuO2) appear with approximately equal (3.2×10-4 g/(m2?d)) | Little effective | ||
[36] | Natural minerals containing radionuclides | The leaching rate of Zr from irradiated zircon (1.8×10-2 g/(m2?d) is 10-100 times than that of undamaged zircon | Effective |
[37] | Accelerator ion implantation | The dissolution rate of pyrochlore bombarded by heavy ion is 50 times higher than that of non-bombarded | Effective |
[1] |
WANG J, SU R, CHEN W M , et al. Deep geological disposal of high-level radioactive wastes in China. Chinese Journal of Rock Mechanics & Engineering, 2006,25(4):649-658.
DOI URL |
[2] |
EWING R C . Long-term storage of spent nuclear fuel. Nature Materials, 2015,14(3):252-257.
DOI URL PMID |
[3] |
谭宏斌, 李玉香 . 放射性废物固化方法综述. 云南环境科学, 2004,23(4):1-3.
DOI URL |
[4] |
CHEN F Y, JIE W Q, DELBERT E D . Corrosion property of iron phosphate simulated HLW melts. Journal of Inorganic Materials, 2000,15(4):653-659.
DOI URL |
[5] |
EWING R C . Nuclear waste forms for actinides. Proc. Nat. Acad. Sci., 1999,96(7):3432-3439.
DOI URL PMID |
[6] | WANG L L, XIE H, CHEN Q Y , et al. Synthesis and charaterization of thorium-doped Nd2Zr2O7 pyrochlore. Journal of Inorganic Materials, 2015,30(1):81-86. |
[7] |
DONALD I W, METCALFE B L, TAYLOR R N J . The immobilization of high level radioactive wastes using ceramics and glasses. Journal of Materials Science, 1997,32(22):5851-5887.
DOI URL |
[8] |
何涌 . 高放废液玻璃固化体和矿物固化体性质的比较. 辐射防护, 2001,21(1):43-47.
DOI URL |
[9] |
HAYWARD P J, CECCHETTO E V . Development of sphene-based glass ceramics tailored for canadian waste disposal conditions. Mater. Res. Soc. Symp. Proc., 1981,6:91-97.
DOI URL |
[10] | 盛嘉伟, 罗上庚, 汤宝龙 . 高放废液的玻璃固化及固化体的浸出行为与发展情况. 硅酸盐学报, 1997,25(1):83-88. |
[11] | 张华 . 高放固化体处置条件下的浸出和模型研究. 北京: 中国原子能科学研究院博士学位论文, 2004. |
[12] | MENDEL J E . Nuclear Waste Materials Characterization Center. Topp S V, Semiannual progress report, PNL-5683 America, 1985: 1-54. |
[13] | C1285-02, Standard test methods for determining chemical durability of nuclear, hazardous, and mixed waste glasses and multiphase glass ceramics: The product consistency test (PCT). |
[14] |
吴萍萍, 张骋, 徐海芳 , 等. 玻璃固化体抗浸蚀性能实验研究进展. 现代技术陶瓷, 2010,31(3):28-34.
DOI URL |
[15] | EJ/1186-2005, 放射性废物体和废物包的特性鉴定. |
[16] |
KÖHLER S J, HAROUIYA N, CHAÏRAT C , et al. Experimental studies of REE fractionation during water-mineral interactions: REE release rates during apatite dissolution from pH 2.8 to 9.2. Chem. Geol., 2005,222(3/4):168-182.
DOI URL |
[17] | ICENHOWER J P, STRACHAN D M, LINDBERG M J , et al. Dissolution kinetics of titanate-based ceramic waste forms: results from single-pass flow tests on radiation damaged specimens. United States: N.p., DOI: 10.2172/15003935. |
[18] |
HAYWARD P J, WATSON D G, MCILWAIN A K , et al. Leaching studies of sphene ceramics containing substituted radionuclides. Nuclear and Chemical Waste Management, 1986,6(1):71-80.
DOI URL |
[19] | GEISLER T, PIDGEON R T, KURTZ R , et al. Experimental hydrothermal alteration of partially metamict zircon. Am. Mineral., 2003,88(10):1496-1513. |
[20] |
TOULHOAT N, TOULHOAT N, MONCOFFRE N , et al. Enhancement of zirconolite dissolution due to water radiolysis . MRS Proceedings, 2006, 985: 0985-NN09-04.
DOI URL |
[21] |
BERGER A, GNOS E, JANOTS E , et al. Formation and composition of rhabdophane, bastnäsite and hydrated thorium minerals during alteration: implications for geochronology and low-temperature processes. Chem. Geol., 2008,254(3):238-248.
DOI URL |
[22] |
张华, 杨建文, 李宝军 , 等. 富烧绿石在模拟处置条件下的浸出行为研究. 核化学与放射化学, 2004,26(2):65-70.
DOI URL |
[23] |
FRUGIER P, MARTIN C, RIBET I , et al. The effect of composition on the leaching of three nuclear waste glasses: R7T7, AVM and VRZ.[J]. Nucl. Mater., 2005,346(2/3):194-207.
DOI URL |
[24] | PIRLET V. Influence of the near-field conditions on the mobile concentrations of Np and Tc leached from vitrified HLW. MRS Proceedings, 2004, 824: CC7. 5. |
[25] | 李鹏, 丁新更, 杨辉 , 等. 钙钛锆石玻璃陶瓷体的晶化和抗浸出性能. 硅酸盐学报, 2012,40(2):324-328. |
[26] |
盛嘉伟, 罗上庚, 汤宝龙 , 等. 90-19/U模拟高放玻璃固化体的浸出特性评价. 核化学与放射化学, 1995,17(1):1-6.
DOI URL |
[27] |
SHIN H Y, PARK H, YOO K . The effect of temperature on the leaching of monazite obtained from heavy mineral sands. Geosystem Engineering, 2012,15(2):118-122.
DOI URL |
[28] | HAWTHORNE F C, GROAT L A, RAUDSEPP M , et al. Alpha- decay damage in titanite. Am. Mineral., 1991,76(3/4):370-396. |
[29] | 滕元成, 曾冲盛, 任雪潭 , 等. 合成榍石的化学稳定性. 原子能科学技术, 2010,44(1):14-19. |
[30] |
GEISLER T, ZHANG M SALJE E K H, ., Recrystallization of almost fully amorphous zircon under hydrothermal conditions: an infrared spectroscopic study.[J]. Nucl. Mater., 2003,320(3):280-291.
DOI URL |
[31] |
RIZVANOVA N G, GAIDAMAKO I M, LEVCHENKOV O A , et al. Interaction of metamict zircon with fluids of various composition. Geochemistry International, 2007,45(5):465-477.
DOI URL |
[32] | TRIBET M, TOULHOAT N, MONCOFFRE N , et al. Leaching of a zirconolite ceramic waste-form under proton and He 2+ irradiation . Radiochimica Acta, 2008,96(9/10/11):619-624. |
[33] | PÖML P, GEISLER T, COBOS-SABATÉ J , et al. The mechanism of the hydrothermal alteration of cerium- and plutonium-doped zirconolite.[J]. Nucl. Mater., 2011,410(1):10-23. |
[34] |
PÖML P, MENNEKEN M, STEPHAN T , et al. Mechanism of hydrothermal alteration of natural self-irradiated and synthetic crystalline titanate-based pyrochlore. Geochim . Cosmochim Acta., 2007,71(13):3311-3322.
DOI URL |
[35] |
MITAMURA H, MATSUMOTO S, STEWART M W A , et al. α-Decay damage effects in curium-doped titanate ceramic containing sodium-free high-level nuclear waste.[J]. Am. Ceram. Soc., 1994,77(9):2255-2264.
DOI URL |
[36] |
EWING R C, HAAKER R F, LUTZE W . Leachability of zircon as a function of alpha dose. MRS Online Proceeding Library, 1980,11(1):389-397.
DOI URL |
[37] |
BEGG B D, HESS N J, WEBER W J , et al. Heavy-ion irradiation effects on structures and acid dissolution of pyrochlores.[J]. Nucl. Mater., 2001,288(2):208-216.
DOI URL |
[38] |
GEISLER T, TRACHENKO K, RÍOS S , et al. Impact of self-irradiation damage on the aqueous durability of zircon (ZrSiO4): implications for its suitability as a nuclear waste form. Journal of Physics Condensed Matter, 2003,15(37):1597-1605.
DOI URL |
[39] | SALJE E K H, CHROSCH J, EWING R C . Is “metamictization” of zircon a phase transition? Am. Mineral., 1999,84(7/8):1107-1116. |
[40] |
TRACHENKO K, DOVE M T, SALJE E K H . Reply to comment on 'large swelling and percolation in irradiated zircon'. Journal of Physics Condensed Matter, 2003,15(15):6457-6471.
DOI URL |
[41] | TROCELLIER P, DELMAS R . Chemical durability of zircon. Nuclear Inst and Methods in Physics Research B, 2001,181(1):408-412. |
[42] |
GEISLER T, PIDGEON R T, BRONSWIJK W V , et al. Transport of uranium, thorium, and lead in metamict zircon under low- temperature hydrothermal conditions. Chem. Geol., 2002,191(1):141-154.
DOI URL |
[43] |
GEISLER T, RASHWAN T, RAHN A A , et al. Low-temperature hydrothermal alteration of natural metamict zircons from the eastern desert, Egypt. Mineralogical Magazine, 2003,67(3):485-508.
DOI URL |
[44] | GEISLER T, SCHALTEGGER U, TOMASCHEK F . Re-equilibration of zircon in aqueous fluids and melts. Elements, 2007,3(1):43-50. |
[45] |
ZHANG M, MADDRELL E R, ABRAITIS P K , et al. Impact of leach on lead vanado-iodoapatite [Pb5(VO4)3I]: an infrared and Raman spectroscopic study. Materials Science & Engineering B, 2007,137(1):149-155.
DOI URL |
[46] |
GEISLER T, PÖML P, STEPHAN T , et al. Experimental observation of an interface-controlled pseudomorphic replacement reaction in a natural crystalline pyrochlore. Am. Mineral., 2005,90(10):1683-1687.
DOI URL |
[47] | GEISLER T, ULONSKA M, SCHLEICHER H , et al. Leaching and differential recrystallization of metamict zircon under experimental hydrothermal conditions. Contrib. Mineral. Petrol., 2001,141(1):53-65. |
[48] | LIAN J, ZU X T, KUTTY K V G , et al. Ion-irradiation-induced amorphization of La2Zr2O7 pyrochlore. Phys. Rev. B, 2002, 66(66): 054108-1-5. |
[1] | 朱文杰, 唐璐, 陆继长, 刘江平, 罗永明. 钙钛矿型氧化物催化氧化挥发性有机化合物的研究进展[J]. 无机材料学报, 2025, 40(7): 735-746. |
[2] | 胡智超, 杨鸿宇, 杨鸿程, 孙成礼, 杨俊, 李恩竹. P-V-L键理论在微波介质陶瓷性能调控中的应用[J]. 无机材料学报, 2025, 40(6): 609-626. |
[3] | 吴琼, 沈炳林, 张茂华, 姚方周, 邢志鹏, 王轲. 铅基织构压电陶瓷研究进展[J]. 无机材料学报, 2025, 40(6): 563-574. |
[4] | 张碧辉, 刘小强, 陈湘明. Ruddlesden-Popper结构杂化非常规铁电体的研究进展[J]. 无机材料学报, 2025, 40(6): 587-608. |
[5] | 吴杰, 杨帅, 王明文, 李景雷, 李纯纯, 李飞. 铅基织构压电陶瓷的发展历程、现状与挑战[J]. 无机材料学报, 2025, 40(6): 575-586. |
[6] | 姜昆, 李乐天, 郑木鹏, 胡永明, 潘勤学, 吴超峰, 王轲. PZT陶瓷的低温烧结研究进展[J]. 无机材料学报, 2025, 40(6): 627-638. |
[7] | 田睿智, 兰正义, 殷杰, 郝南京, 陈航榕, 马明. 基于微流控技术的纳米无机生物材料制备: 原理及其研究进展[J]. 无机材料学报, 2025, 40(4): 337-347. |
[8] | 张继国, 吴田, 赵旭, 杨钒, 夏天, 孙士恩. 钠离子电池正极材料循环稳定性提升策略及产业化进程[J]. 无机材料学报, 2025, 40(4): 348-362. |
[9] | 殷杰, 耿佳毅, 王康龙, 陈忠明, 刘学建, 黄政仁. SiC陶瓷的3D打印成形与致密化新进展[J]. 无机材料学报, 2025, 40(3): 245-255. |
[10] | 谌广昌, 段小明, 朱金荣, 龚情, 蔡德龙, 李宇航, 杨东雷, 陈彪, 李新民, 邓旭东, 余瑾, 刘博雅, 何培刚, 贾德昌, 周玉. 直升机特定结构先进陶瓷材料研究进展与应用展望[J]. 无机材料学报, 2025, 40(3): 225-244. |
[11] | 范晓波, 祖梅, 杨向飞, 宋策, 陈晨, 王子, 罗文华, 程海峰. 质子调控型电化学离子突触研究进展[J]. 无机材料学报, 2025, 40(3): 256-270. |
[12] | 海热古·吐逊, 郭乐, 丁嘉仪, 周嘉琪, 张学良, 努尔尼沙·阿力甫. 上转换荧光探针辅助的光学成像技术在肿瘤显影中的应用研究进展[J]. 无机材料学报, 2025, 40(2): 145-158. |
[13] | 孙树娟, 郑南南, 潘昊坤, 马猛, 陈俊, 黄秀兵. 单原子催化剂制备方法的研究进展[J]. 无机材料学报, 2025, 40(2): 113-127. |
[14] | 陶桂龙, 支国伟, 罗添友, 欧阳佩东, 衣新燕, 李国强. 空腔型薄膜体声波滤波器的关键技术进展[J]. 无机材料学报, 2025, 40(2): 128-144. |
[15] | 周帆, 田志林, 李斌. 热防护系统用碳化物超高温陶瓷抗烧蚀涂层研究进展[J]. 无机材料学报, 2025, 40(1): 1-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||