[1] |
WANG Y, HE Y M, LAI Q H,et al. Review of the progress in preparing nano TiO2: an important environmental engineering material. J. Environ. Sci., 2014, 26(11): 2139-2177.
|
[2] |
WANG P, HUANG B B, QIN X Y,et al. Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angew. Chem. Int. Ed., 2008, 47(41): 7931-7933.
|
[3] |
OZTURK B, SOYLU G S P. Synthesis of surfactant-assisted FeVO4 nanostructure: characterization and photocatalytic degradation of phenol. J. Mol. Catal. A, 2015, 398: 65-71.
|
[4] |
WANG M, WANG L A, ZHANG W J.Synthesis of FeVO4 novel visible light photocatalyst by liquid phase precipitation and photocatalytic property.Mater. Rev., 2009, 23(4): 24-27.
|
[5] |
RAO Z, GU Y, HUANG C Y,et al. Photodegradation of toxic organic pollutants by FeVO4 under visible-light irradiation. Environ. Chem., 2013, 32(4): 564-571.
|
[6] |
ROBERTSON B, KOSTINER E.Crystal structure and Mössbauer effect investigation of FeVO4. J. Solid State Chem., 1972, 4(1): 29-37.
|
[7] |
OKA Y, YAO T, YAMAMOTO N,et al. Hydrothermal synthesis, crystal structure, and magnetic properties of FeVO4-II. J. Solid State Chem., 1996, 123(1): 54-59.
|
[8] |
SORESCU M, XU T H, BURNETT J D,et al. Role of mechanochemical milling in FeVO4 synthesis. J. Magn. Magn. Mater., 2015, 387: 37-45.
|
[9] |
DUTTA D P, RAMAKRISHNAN M, ROY M,et al. Effect of transition metal doping on the photocatalytic properties of FeVO4 nanoparticles. J. Photoch. Photobio. A, 2017, 335: 102-111.
|
[10] |
NITHYA V D, PANDI K, LEE Y S,et al. Synthesis, characterization and electrochemical performances of nanocrystalline FeVO4 as negative and LiCoPO4 as positive electrode for asymmetric supercapacitor. Electrochim. Acta, 2015, 167: 97-104.
|
[11] |
NITHYA V D, KALAI SELVAN R, SANJEEVIRAJA C,et al. Synthesis and characterization of FeVO4 nanoparticles. Mater. Res. Bull., 2011, 46(10): 1654-1658.
|
[12] |
DENG J H, JIANG J Y, ZHANG Y Y,et al. FeVO4 as a highly active heterogeneous Fenton-like catalyst towards the degradation of Orange II. Appl. Catal. B, 2008, 84(3/4): 468-473.
|
[13] |
HE Z Z, YAMAURA J I, UEDA Y.Flux growth and magnetic properties of FeVO4 single crystals. J. Solid State Chem., 2008, 181(9): 2346-2349.
|
[14] |
LIU X L, CAO Y C, ZHENG H,et al. Synthesis and modification of FeVO4 as novel anode for lithium-ion batteries. Appl. Surf. Sci., 2017, 394: 183-189.
|
[15] |
YAN N, XU Y, LI H J,et al. The preparation of FeVO4 as a new sort of anode material for lithium ion batteries. Mater. Lett., 2016, 165: 223-226.
|
[16] |
YU Y Z, JU P, ZHANG D,et al. Peroxidase-like activity of FeVO4 nanobelts and its analytical application for optical detection of hydrogen peroxide. Sensor. Actuat. B, 2016, 233: 162-172.
|
[17] |
SI Y C, LIU G N, DENG C H,et al. Facile synthesis and electrochemical properties of amorphous FeVO4 as cathode materials for lithium secondary batteries. J. Electroanal. Chem., 2017, 787: 19-23.
|
[18] |
HE F, CHEN G, YU Y G,et al. The sulfur-bubble template- mediated synthesis of uniform porous g-C3N4 with superior photocatalytic performance. Chem. Commun., 2015, 51: 425-427.
|
[19] |
KRUK M, JARONIEC M.Gas adsorption characterization of ordered organic-inorganic nanocomposite materials.Chem. Mater., 2001, 13: 3169-3183.
|
[20] |
YANG W, TAN G Q, HUANG J,et al. Enhanced magnetic property and photocatalytic activity of UV-light responsive N-doped Fe2O3/FeVO4 heterojunction. Ceram. Int., 2015, 41(1): 1495-1503.
|
[21] |
LIU W, LAI S Y, DAI H X,et al. Oxidative dehydrogenation of n-butane over mesoporous VOx/SBA-15 catalysts. Catal. Lett., 2007, 113(3/4): 147-154.
|
[22] |
KULKARNI G U, RAO C N R, Roberts M W. Nature of the oxygen species at Ni(110) and Ni(100) surfaces revealed by exposure to oxygen and oxygen-ammonia mixtures: evidence for the surface reactivity of O-type species.J. Phys. Chem., 1995, 99: 3310-3316.
|
[23] |
ZHANG C, ZHU Y F.Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts.Chem. Mater., 2005, 17(13): 3537-3545.
|
[24] |
ZHOU L, WANG W Z, LIU S W,et al. A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst. J. Mol. Catal. A, 2006, 252(1/2): 120-124.
|
[25] |
LI A T, CAO L Y, HUANG Y C,et al. Optical property of FeVO4 crystallites synthesized by sonochemical method. J. Synth. Cryst., 2012, 41(5): 1227-1231.
|
[26] |
CASTILLO N C, DING L, HEEL A,et al. On the photocatalytic degradation of phenol and dichloroacetate by BiVO4: the need of a sacrificial electron acceptor. J. Photochem. Photobiol. A, 2010, 216(2/3): 221-227.
|
[27] |
SHANG M, WANG W Z, SUN S M,et al. Efficient visible light-induced photocatalytic degradation of contaminant by spindle-like PANI/BiVO4. J. Phys. Chem. C, 2009, 113(47): 20228-20233.
|
[28] |
VALENTE J S, TZOMPANTZI F, PRINCE J,et al. Adsorption and photocatalytic degradation of phenol and 2,4-dichlorophenoxiacetic acid by Mg-Zn-Al layered double hydroxides. Appl. Catal. B, 2009, 90(3/4): 330-338.
|
[29] |
SUN M, LI D Z, ZHANG W J,et al. Photocatalyst Cd2Sb2O6.8 with high photocatalytic activity toward benzene and dyes. J. Phys. Chem. C, 2009, 113(33): 14916-14921.
|