无机材料学报 ›› 2018, Vol. 33 ›› Issue (1): 1-8.DOI: 10.15541/jim20170160 CSTR: 32189.14.10.15541/jim20170160
所属专题: 优秀作者论文集锦; 2019~2020年度优秀作者作品欣赏:功能材料
• • 下一篇
李江1, 戴佳卫1, 潘裕柏2
收稿日期:
2017-04-17
修回日期:
2017-05-11
出版日期:
2018-01-23
网络出版日期:
2017-12-15
作者简介:
李 江(1977-), 男, 研究员. E-mail: lijiang@mail.sic.ac.cn
基金资助:
LI Jiang1, DAI Jia-Wei1, PAN Yu-Bai2
Received:
2017-04-17
Revised:
2017-05-11
Published:
2018-01-23
Online:
2017-12-15
摘要:
磁光材料是指从紫外到红外波段具有磁光效应的光功能材料, 按照材料的类型可将其分为磁光玻璃、磁光晶体、磁光透明陶瓷等。其中, 磁光透明陶瓷是近年来出现的一种新型磁光介质材料, 具有高Verdet常数、大尺寸、高热导率、高激光损伤阈值等优点, 因而是用于高功率激光器中法拉第隔离器最理想的材料之一。目前已经报道的磁光透明陶瓷材料主要包括铽镓石榴石(Tb3Ga5O12, TGG)陶瓷、铽铝石榴石(Tb3Al5O12, TAG)陶瓷以及一些倍半氧化物陶瓷, 如氧化铽(Tb2O3)陶瓷、氧化钬(Ho2O3)陶瓷、氧化镝(Dy2O3)陶瓷等。本文首先介绍了几种常见的磁光效应, 详细阐述了法拉第效应和克尔效应的基本原理。着重对几种磁光透明陶瓷材料的研究进展、材料性能、应用前景进行了综述和介绍, 并对这几种磁光透明陶瓷的性能进行了比较和分析, 指出了它们存在的问题和今后的研究方向。
中图分类号:
李江, 戴佳卫, 潘裕柏. 磁光透明陶瓷的研究进展[J]. 无机材料学报, 2018, 33(1): 1-8.
LI Jiang, DAI Jia-Wei, PAN Yu-Bai. Research Progress on Magneto-optical Transparent Ceramics[J]. Journal of Inorganic Materials, 2018, 33(1): 1-8.
Laser wavelength /nm | F.S.surface reflectivity | Crystal TGG 18 mm | Ceramic TGG 20 mm | Scattering ratio (Ceramic/Crystal) |
---|---|---|---|---|
632 | 3.45×10-2 | 1.4×10-3 (1×10-3 cm-1) | 4.8×10-3 (2.4×10-3 cm-1) | 2.4 |
1064 | 3.36×10-2 | 1×10-3 (5×10-4 cm-1) | 1×10-3 (5×10-4 cm-1) | 1.0 |
表1 TGG陶瓷和TGG单晶样品的散射损耗[1]
Table 1 Optical scattering of ceramic and single crystal TGG samples[1]
Laser wavelength /nm | F.S.surface reflectivity | Crystal TGG 18 mm | Ceramic TGG 20 mm | Scattering ratio (Ceramic/Crystal) |
---|---|---|---|---|
632 | 3.45×10-2 | 1.4×10-3 (1×10-3 cm-1) | 4.8×10-3 (2.4×10-3 cm-1) | 2.4 |
1064 | 3.36×10-2 | 1×10-3 (5×10-4 cm-1) | 1×10-3 (5×10-4 cm-1) | 1.0 |
图5 退偏比随激光功率的变化[39]
Fig. 5 Experimental results of depolarization as a function of laser power Red and blue circles denote results for the TGG ceramic with and without a magnet field. Open squares denote the calculated result for the TGG[39]
图7 不同温度下烧结制备的TAG陶瓷的光学透过率[41]
Fig. 7 Optical transmittance of the mirror polished transparent ceramics sintered at different temperatures[41]^T1-1550℃; T2-1600℃; T3-1650℃; T4-1700℃
图9 TGG(×)、TAG(◆)及Ce:TAG(0.1at%)(▲)透明陶瓷样品的热透镜光功率随辐射功率的变化图[49]
Fig. 9 Optical power of thermal lens versus rudiation power for TGG(×), TAG(◆), Ce:TAG(▲) [49]
Medium | Isolation ratio @laser power | Thermal lens @laser power | Water cooling |
---|---|---|---|
TGG crystal | 30 dB@650 W | 6.5 m@340 W | Optional |
TGG ceramics | 30 dB@340 W | 6.5 m@340 W | Optional |
TAG ceramics | 38 dB@300 W | 8 m@300 W | Necessary |
Ce:TAG ceramics (0.1at%) | 31 dB@300 W | 3.8 m@300 W | Necessary |
表2 基于不同磁光介质的法拉第隔离器的参数比较[48]
Table 2 Ceramic-based FI characteristics[48]
Medium | Isolation ratio @laser power | Thermal lens @laser power | Water cooling |
---|---|---|---|
TGG crystal | 30 dB@650 W | 6.5 m@340 W | Optional |
TGG ceramics | 30 dB@340 W | 6.5 m@340 W | Optional |
TAG ceramics | 38 dB@300 W | 8 m@300 W | Necessary |
Ce:TAG ceramics (0.1at%) | 31 dB@300 W | 3.8 m@300 W | Necessary |
图11 (a)不同掺杂浓度的Tb3+:Y2O3陶瓷和TGG单晶在不同波长处的Verdet常数, (b)Tb2O3和TGG的Verdet常数之比[55]与波长的关系
Fig. 11 (a) Wavelength dependence of Verdet constant of Tb3+:Y2O3 for 10%, 20%, and 30% concentrations of Tb3+ ions, Tb2O3 ceramics, and TGG single crystal; (b) VTb2O3/VTGG ratio versus wavelength[55]
[1] | YOSHIDA H, TSUBAKIMOTO K, FUJIMOTO Y, et al.Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator.Opt. Express, 2011, 19(16): 15181-15187. |
[2] | ZU P, CHAN C C, LEW W S, et al.High extinction ratio magneto- optical fiber modulator based on nanoparticle magnetic fluids.IEEE Photonics J., 2012, 4(4): 1140-1146. |
[3] | DUFFY R M, NETTERFIELD R P.Design of Faraday rotators and modulators.Rev. Sci. Instrum., 1984, 55(5): 743-746. |
[4] | TATAM R P, BERWICK M, JONES J D C, et al. Faraday effect magnetometry utilizing high Verdet constant glass.Appl. Phys. Lett., 1987, 51(11): 864-866. |
[5] | LEE B.Review of the present status of optical fiber sensors.Opt. Fiber Technol., 2003, 9(2): 57-79. |
[6] | SHOJI Y, MIZUMOTO T, YOKOI H, et al.Magneto-optical isolator with silicon waveguides fabricated by direct bonding.Appl. Phys. Lett., 2008, 92(7): 071117. |
[7] | ZABLUDA V, POZELUYKO A, EDELMAN I, et al.Concentration dependence of the Faraday rotation in the Pr containing oxide glasses.J. Magn. Magn. Mater., 1998, 185(2): 207-212. |
[8] | MALAKHOVSKII A V, EDELMAN I S, RADZYNER Y, et al.Magnetic and magneto-optical properties of oxide glasses containing Pr3+, Dy3+ and Nd3+ ions.J. Magn. Magn. Mater., 2003, 263(1): 161-172. |
[9] | NISHIBU S, NISHIO T, YONEZAWA S, et al.Preparation and magnetic properties of TbF3 containing oxide fluoride glasses.J. Fluorine Chem., 2006, 127(6): 821-823. |
[10] | HAYAKAWA T, NOGAMI M, NISHI N, et al.Faraday rotation effect of highly Tb2O3/Dy2O3-concentrated B2O3-Ga2O3-SiO2-P2O5 glasses.Chem. Mater., 2002, 14(8): 3223-3225. |
[11] | GOLIS E P, INGRAM A.Investigations of magneto-optic properties in PbO-Bi2O3-GeO2 glass system.Journal of Physics: Conference Series, 2007, 79(1): 012003. |
[12] | OVCHARENKO N V, SMIRNOVA T V.High refractive index and magneto-optical glasses in the systems TeO2-WO3-Bi2O3 and TeO2-WO3-PbO.J. Non-Cryst. solids, 2001, 291(1): 121-126. |
[13] | RUAN Y, JARVIS R A, RODE A V, et al.Wavelength dispersion of Verdet constants in chalcogenide glasses for magneto-optical waveguide devices.Opt. Commun., 2005, 252(1): 39-45. |
[14] | WILLIAMS P A, ROSE A H, DAY G W, et al.Temperature dependence of the Verdet constant in several diamagnetic glasses.Appl. Opt., 1991, 30(10): 1176-1178. |
[15] | DURCOK S, POLLERT E, SIMSA Z, et al.Growth of YIG and BiGdIG single crystals for magnetooptical applications.Mater. Chem. Phys., 1996, 45(2): 124-129. |
[16] | PARK M B, CHO N H.Structural and magnetic characteristics of yttrium iron garnet (YIG, Ce: YIG) films prepared by RF magnetron sputter techniques.J. Magn. Magn. Mater., 2001, 231(2): 253-264. |
[17] | SHIRAISHI K, NISHINO K, KAWAKAMI S, et al.Temperature-insensitive fiber Faraday rotator.Appl. Opt., 1985, 24(13): 1896-1897. |
[18] | CHEN Z, HANG Y, YANG L, et al.Fabrication and characterization of cerium-doped terbium gallium garnet with high magneto- optical properties.Opt. Lett., 2015, 40(5): 820-822. |
[19] | CHEN Z, HANG Y, YANG L, et al.Great enhancement of Faraday effect by Pr doping terbium gallium garnet, a highly transparent VI-IR Faraday rotator.Mater. Lett., 2015, 145: 171-173. |
[20] | KHAZANOV E A, KULAGIN O V, YOSHIDA S, et al.Investigation of self-induced depolarization of laser radiation in terbium gallium garnet.IEEE J. Quantum Elect., 1999, 35(8): 1116-1122. |
[21] | VOITOVICH A V, KATIN E V, MUKHIN I B, et al.Wide-aperture Faraday isolator for kilowatt average radiation powers.Quantum Electron., 2007, 37(5): 471. |
[22] | CHANI V I, YOSHIKAWA A, MACHIDA H, et al.(Tb,Yb)3Al5O12 garnet: crystal-chemistry and fiber growth by micro-pulling-down technique.Mater. Sci. Eng. B, 2000, 75(1): 53-60. |
[23] | CHANI V I, YOSHIKAWA A, MACHIDA H, et al.Melt growth of (Tb,Lu)3Al5O12 mixed garnet fiber crystals.J. Cryst. Growth, 2000, 212(3): 469-475. |
[24] | GANSCHOW S, KLIMM D, EPELBAUM B M, et al.Growth conditions and composition of terbium aluminum garnet single crystals grown by the micro pulling down technique.J. Cryst. Growth, 2001, 225(2): 454-457. |
[25] | GEHO M, SEKIJIMA T, FUJII T, et al.Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine.J. Cryst. Growth, 2004, 267(1): 188-193. |
[26] | SANGHERA J, KIM W, VILLALOBOS G, et al.Ceramic laser materials: past and present.Opt. Mater., 2013, 35(4): 693-699. |
[27] | LI J, ZHOU J, PAN Y, et al.Solid-state reactive sintering and optical characteristics of transparent Er: YAG laser ceramics.J. Am. Ceram. Soc., 2012, 95(3): 1029-1032. |
[28] | LEE S H, KOCHAWATTANA S, MESSING G L, et al.Solid-state reactive sintering of transparent polycrystalline Nd: YAG ceramics.J. Am. Ceram. Soc., 2006, 89(6): 1945-1950. |
[29] | KOPYLOV Y L, KRAVCHENKO V B, BAGAYEV S N, et al.Development of Nd3+: Y3Al 5O12 laser ceramics by high-pressure colloidal slip-casting (HPCSC) method.Opt. Mater., 2009, 31(5): 707-710. |
[30] | IKESUE A, KINOSHITA T, KAMATA K, et al.Fabrication and optical properties of high‐performance polycrystalline Nd: YAG ceramics for solid-state lasers.J. Am. Ceram. Soc., 1995, 78(4): 1033-1040. |
[31] | 潘裕柏, 李江, 姜本学. 先进光功能透明陶瓷. 北京: 科学出版社, 2013. |
[32] | ATATURE M, DREISER J, BADOLATO A, et al.Observation of Faraday rotation from a single confined spin.Nat. Phys., 2007, 3(2): 101-106. |
[33] | YASUHARA R, TOKITA S, KAWANAKA J, et al.Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics.Opt. Express, 2007, 15(18): 11255-11261. |
[34] | ZEPER W B, GREIDANUS F, CARCIA P F, et al.Perpendicular magnetic anisotropy and magneto-optical Kerr effect of vapor- deposited Co/Pt-layered structures.J. Appl. Phys., 1989, 65(12): 4971-4975. |
[35] | CEBOLLADA A, WELLER D, STICHT J, et al.Enhanced magneto- optical Kerr effect in spontaneously ordered FePt alloys: quantitative agreement between theory and experiment.Phys. Rev.B, 1994, 50(5): 3419. |
[36] | ZHUANG N, SONG C, GUO L, et al.Growth of terbium gallium garnet (TGG) magneto-optic crystals by edge-defined film-fed growth method. J. Cryst. Growth, 2013, 381: 27-32. |
[37] | KHAZANOV E A.Investigation of Faraday isolator and Faraday Mirror Designs for Multi-kilowatt Power Lasers[C]//High-Power Lasers and Applications. International Society for Optics and Photonics, 2003: 115-126. |
[38] | KAGAN M A, KHAZANOV E A.Thermally induced birefringence in Faraday devices made from terbium gallium garnet- polycrystalline ceramics.Appl. Opt., 2004, 43(32): 6030-6039. |
[39] | YASUHARA R, SNETKOV I, STAROBOR A, et al.Terbium gallium garnet ceramic Faraday rotator for high-power laser application.Opt. Lett., 2014, 39(5): 1145-1148. |
[40] | SNETKOV I L, YASUHARA R, STAROBOR A V, et al.TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization.Opt. Express, 2014, 22(4): 4144-4151. |
[41] | LIN H, ZHOU S, TENG H.Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications.Opt. Mater., 2011, 33(11): 1833-1836. |
[42] | CHEN C, YI X, ZHANG S, et al.Vacuum sintering of Tb3Al5O12 transparent ceramics with combined TEOS+MgO sintering aids.Ceram. Int., 2015, 41(10): 12823-12827. |
[43] | DAI J W, SNETKOV I L, PALASHOV O V, et al.Fabrication, microstructure and magneto-optical properties of Tb3Al5O12 transparent ceramics. Opt. Mater., 2016, 62: 205-210. |
[44] | 戴佳卫, 李江, 潘裕柏, 等. 一种新型的制备铽铝石榴石基纳米粉体及磁光透明陶瓷的方法. 专利, 201611239053.4, 2016- 12-29. |
[45] | 戴佳卫, 尹瑞, 李江, 等. 一种非水基凝胶注模成型制备铽铝石榴石基磁光透明陶瓷的方法. 专利,201610554361.X, 2016- 07-15. |
[46] | CHEN C, NI Y, ZHOU S, et al.Preparation of (Tb0.8Y0.2)3Al5O12 transparent ceramic as novel magneto-optical isolator material.Chin. Opt. Lett., 2013, 11(2): 021601. |
[47] | CHEN C, ZHOU S, LIN H, et al.Fabrication and performance optimization of the magneto-optical (Tb1-xRx)3Al5O12 (R=Y, Ce) transparent ceramics.Appl. Phys. Lett., 2012, 101(13): 131908. |
[48] | FURUSE H, YASUHARA R, HIRAGA K, et al.High Verdet constant of Ti-doped terbium aluminum garnet (TAG) ceramics.Opt. Mater. Express, 2016, 6(1): 191-196. |
[49] | STAROBOR A, ZHELEZNOV D, PALASHOV O, et al.Study of the properties and prospects of Ce: TAG and TGG magnetooptical ceramics for optical isolators for lasers with high average power.Opt. Mater. Express, 2014, 4(10): 2127-2132. |
[50] | ZHELEZNOV D, STAROBOR A, PALASHOV O, et al.High-power Faraday isolators based on TAG ceramics.Opt. Express, 2014, 22(3): 2578-2583. |
[51] | ZHELEZNOV D, STAROBOR A, PALASHOV O, et al.Improving characteristics of Faraday isolators based on TAG ceramics by cerium doping.Opt. Lett., 2014, 39(7): 2183-2186. |
[52] | YASUHARA R, FURUSE H.Thermally induced depolarization in TGG ceramics.Opt. Lett., 2013, 38(10): 1751-1753. |
[53] | YASUHARA R, NOZAWA H, YANAGITANI T, et al.Temperature dependence of thermo-optic effects of single-crystal and ceramic TGG.Opt. Express, 2013, 21(25): 31443-31452. |
[54] | YASUHARA R, SNETKOV I, STAROBOR A, et al.Terbium gallium garnet ceramic-based Faraday isolator with compensation of thermally induced depolarization for high-energy pulsed lasers with kilowatt average power. Appl. Phys. Lett., 2014, 105(24): 241104. |
[55] | SNETKOV I L, PERMIN D A, BALABANOV S S, et al.Wavelength dependence of Verdet constant of Tb3+: Y2O3 ceramics.Appl. Phys. Lett., 2016, 108(16): 161905. |
[56] | FURUSE H, YASUHARA R.Magneto-optical characteristics of holmium oxide (Ho2O3) ceramics.Opt. Mater. Express, 2017, 7(3): 827-833. |
[57] | MORALES J R, AMOS N, KHIZROEV S, et al.Magneto-optical Faraday effect in nanocrystalline oxides.J. Appl. Phys., 2011, 109(9): 093110. |
[1] | 朱文杰, 唐璐, 陆继长, 刘江平, 罗永明. 钙钛矿型氧化物催化氧化挥发性有机化合物的研究进展[J]. 无机材料学报, 2025, 40(7): 735-746. |
[2] | 胡智超, 杨鸿宇, 杨鸿程, 孙成礼, 杨俊, 李恩竹. P-V-L键理论在微波介质陶瓷性能调控中的应用[J]. 无机材料学报, 2025, 40(6): 609-626. |
[3] | 吴琼, 沈炳林, 张茂华, 姚方周, 邢志鹏, 王轲. 铅基织构压电陶瓷研究进展[J]. 无机材料学报, 2025, 40(6): 563-574. |
[4] | 张碧辉, 刘小强, 陈湘明. Ruddlesden-Popper结构杂化非常规铁电体的研究进展[J]. 无机材料学报, 2025, 40(6): 587-608. |
[5] | 吴杰, 杨帅, 王明文, 李景雷, 李纯纯, 李飞. 铅基织构压电陶瓷的发展历程、现状与挑战[J]. 无机材料学报, 2025, 40(6): 575-586. |
[6] | 姜昆, 李乐天, 郑木鹏, 胡永明, 潘勤学, 吴超峰, 王轲. PZT陶瓷的低温烧结研究进展[J]. 无机材料学报, 2025, 40(6): 627-638. |
[7] | 田睿智, 兰正义, 殷杰, 郝南京, 陈航榕, 马明. 基于微流控技术的纳米无机生物材料制备: 原理及其研究进展[J]. 无机材料学报, 2025, 40(4): 337-347. |
[8] | 张继国, 吴田, 赵旭, 杨钒, 夏天, 孙士恩. 钠离子电池正极材料循环稳定性提升策略及产业化进程[J]. 无机材料学报, 2025, 40(4): 348-362. |
[9] | 殷杰, 耿佳毅, 王康龙, 陈忠明, 刘学建, 黄政仁. SiC陶瓷的3D打印成形与致密化新进展[J]. 无机材料学报, 2025, 40(3): 245-255. |
[10] | 谌广昌, 段小明, 朱金荣, 龚情, 蔡德龙, 李宇航, 杨东雷, 陈彪, 李新民, 邓旭东, 余瑾, 刘博雅, 何培刚, 贾德昌, 周玉. 直升机特定结构先进陶瓷材料研究进展与应用展望[J]. 无机材料学报, 2025, 40(3): 225-244. |
[11] | 范晓波, 祖梅, 杨向飞, 宋策, 陈晨, 王子, 罗文华, 程海峰. 质子调控型电化学离子突触研究进展[J]. 无机材料学报, 2025, 40(3): 256-270. |
[12] | 海热古·吐逊, 郭乐, 丁嘉仪, 周嘉琪, 张学良, 努尔尼沙·阿力甫. 上转换荧光探针辅助的光学成像技术在肿瘤显影中的应用研究进展[J]. 无机材料学报, 2025, 40(2): 145-158. |
[13] | 孙树娟, 郑南南, 潘昊坤, 马猛, 陈俊, 黄秀兵. 单原子催化剂制备方法的研究进展[J]. 无机材料学报, 2025, 40(2): 113-127. |
[14] | 陶桂龙, 支国伟, 罗添友, 欧阳佩东, 衣新燕, 李国强. 空腔型薄膜体声波滤波器的关键技术进展[J]. 无机材料学报, 2025, 40(2): 128-144. |
[15] | 周帆, 田志林, 李斌. 热防护系统用碳化物超高温陶瓷抗烧蚀涂层研究进展[J]. 无机材料学报, 2025, 40(1): 1-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||