无机材料学报 ›› 2017, Vol. 32 ›› Issue (9): 923-930.DOI: 10.15541/jim20160662 CSTR: 32189.14.10.15541/jim20160662
赵 晗1, 2, 周晓霞1, 潘琳钰1, 2, 陈航榕1
收稿日期:
2016-11-28
修回日期:
2017-01-16
出版日期:
2017-09-30
网络出版日期:
2017-08-29
作者简介:
赵 晗(1991–), 男, 博士研究生. E-mail: zhaohan@student.sic.ac.cn
基金资助:
ZHAO Han1, 2, ZHOU Xiao-Xia1, PAN Lin-Yu1, 2, CHEN Hang-Rong1
Received:
2016-11-28
Revised:
2017-01-16
Published:
2017-09-30
Online:
2017-08-29
About author:
ZHAO Han. E-mail: zhaohan@student.sic.ac.cn
Supported by:
摘要:
采用尿素均相沉淀法合成了CuCeZrOx(CCZ)三元复合氧化物催化剂。采用X射线衍射分析(XRD)、N2-吸脱附测试、X射线光电子能谱(XPS)、扫描透射电镜(STEM)、程序升温还原(脱附、氧化)等技术, 考察煅烧温度对催化剂的物化性质和催化碳烟燃烧活性的影响。结果表明: 350℃煅烧产物CCZ-350表现出最优的催化活性: 在空速为12000 mL/(gcatalyst·h), O2浓度为10vol%, NO浓度为500×10-6, 催化剂和碳烟以10︰1质量比松散接触条件下, 碳烟颗粒最大燃烧速率温度T50 = 407℃, 同时表现出极佳的抗水汽中毒和抗SO2中毒性能, 这与活性组分的高度分散以及催化剂表面大量高活性吸附氧物种的存在有关。此外, 催化剂材料具有疏松多孔的鸟巢状结构, 有利于催化剂和碳烟颗粒的充分接触。该催化剂在柴油车尾气排放温度范围内(150~400℃)还能完全催化氧化柴油车尾气中CO、C3H6和C3H8等其他污染物, 显示出优异的催化净化柴油车尾气的综合性能。
中图分类号:
赵 晗, 周晓霞, 潘琳钰, 陈航榕. 鸟巢状CuCeZrOx三元复合氧化物的合成及其对碳烟颗粒的催化氧化性能研[J]. 无机材料学报, 2017, 32(9): 923-930.
ZHAO Han, ZHOU Xiao-Xia, PAN Lin-Yu, CHEN Hang-Rong. Birdnest-like CuCeZr Mixed Oxides: Synthesis and Excellent Catalysts for Diesel Exhaust Oxidatio[J]. Journal of Inorganic Materials, 2017, 32(9): 923-930.
Sample | Lattice parameter /nm a | SBET/ (m2·g-1) b | VBJH/ (cm3·g-1) c | Dp/nm c |
---|---|---|---|---|
CCZ-300 | 5.416 | 198.0 | 0.960 | 33.8 |
CCZ-350 | 5.415 | 186.0 | 0.900 | 32.6 |
CCZ-400 | 5.420 | 160.0 | 0.850 | 33.6 |
CCZ-500 | 5.418 | 128.0 | 0.800 | 32.5 |
CCZ-600 | 5.420 | 110.0 | 0.700 | 32.9 |
CCZ-800 | 5.415 | 12.0 | 0.150 | 49.0 |
CCZ-1000 | 5.389 | 0.1 | 0.001 | No data |
表1 不同温度煅烧产物CCZ-x的晶胞参数、比表面积、孔容和孔径(x = 300~1000)
Table 1 Structural properties of different CCZ-x catalysts (x = 300-1000)
Sample | Lattice parameter /nm a | SBET/ (m2·g-1) b | VBJH/ (cm3·g-1) c | Dp/nm c |
---|---|---|---|---|
CCZ-300 | 5.416 | 198.0 | 0.960 | 33.8 |
CCZ-350 | 5.415 | 186.0 | 0.900 | 32.6 |
CCZ-400 | 5.420 | 160.0 | 0.850 | 33.6 |
CCZ-500 | 5.418 | 128.0 | 0.800 | 32.5 |
CCZ-600 | 5.420 | 110.0 | 0.700 | 32.9 |
CCZ-800 | 5.415 | 12.0 | 0.150 | 49.0 |
CCZ-1000 | 5.389 | 0.1 | 0.001 | No data |
图2 CCZ-x(x=300-1000)催化碳烟氧化过程的(a)碳烟转化率曲线, (b)特征温度T90、T50及CO2选择性随煅烧温度的变化
Fig. 2 Temperature-programmed oxidation of soot catalyzed by different CCZ-x catalysts (x = 300-1000): soot conversion curves (a), and the change in characteristic temperatures (T90 and T50) and selectivity to CO2 () with increasing calcination temperature (b)
图3 CCZ-x (4: x = 300, 3: x = 350, 2: x = 500, 1: x = 800) 的XPS谱图: Ce 3d (a), Cu 2p (b), Zr 3d (c), O 1s (d)
Fig. 3 Ce 3d (a) , Cu 2p (b), Zr 3d (c), and O 1s (d) XPS patterns of CCZ-x (4: x = 300, 3: x = 350, 2: x = 500, 1: x = 800)
Sample | Cu: Ce: Zr a | Oads/(Oads+Olatt) |
---|---|---|
CCZ-800 | 0.17: 0.60: 0.23 | 0.23 |
CCZ-500 | 0.15: 0.65: 0.20 | 0.46 |
CCZ-350 | 0.12: 0.67: 0.21 | 0.64 |
CCZ-300 | 0.12: 0.69: 0.19 | 0.57 |
表2 不同煅烧温度产物CCZ-x(x = 800, 500, 350, 300)表面化学组分的XPS分析
Table 2 XPS surface analyses of different CCZ-x (x = 800, 500, 350, 300)
Sample | Cu: Ce: Zr a | Oads/(Oads+Olatt) |
---|---|---|
CCZ-800 | 0.17: 0.60: 0.23 | 0.23 |
CCZ-500 | 0.15: 0.65: 0.20 | 0.46 |
CCZ-350 | 0.12: 0.67: 0.21 | 0.64 |
CCZ-300 | 0.12: 0.69: 0.19 | 0.57 |
图4 不同煅烧温度产物CCZ-x (x = 300, 350, 500, 800)的H2-TPR 曲线 (括号中的数据为H2-TPR曲线的积分面积)
Fig. 4 H2-TPR profiles of the selected CCZ-x catalysts (x= 300, 350, 500, and 800) Data in the brackets indicate the integrated area of the H2-TPR curves
图5 不同煅烧温度产物CCZ-x (x = 300, 350, 500, 800)的O2-TPD曲线 (括号中的数据为O2-TPD曲线的积分面积)
Fig. 5 O2-TPD profiles of the selected CCZ-x catalysts (x= 300, 350, 500, and 800) Data in the brackets indicate the integrated area of the O2-TPD curves
图6 CCZ-350的STEM (a, b) 图像和元素分布图(c-e)
Fig. 6 Dark-field (a) and bright-field (b) STEM images and elements mapping (c-e) (corresponding to TEM image in b) of CCZ-350 Scale bars: 100 nm
图7 CCZ-350催化碳烟燃烧过程中鸟巢结构“过滤+催化”作用示意图(a), 活性氧物种对碳烟氧化的催化作用机制(b)
Fig. 7 Schematic representation of (a) the role of the “nest structure” of CCZ-350 in soot combustion process, and (b) the soot combustion in NOx/O2 over CCZ-350 catalyst
[1] | HORVATH H.Atmospheric light absorption—a revie.Atmospheric Environment, 1993, 27(3): 293-317. |
[2] | VAN SETTEN B A A L, MAKKEE M, MOULIJN J A. Science and technology of catalytic diesel particulate filter.Catalysis Reviews-Science and Engineering, 2001, 43(4): 489-564. |
[3] | YU X H, ZHAO Z, WEI Y C,et al.Synthesis of K-doped three-dimensionally ordered macroporous Mn0.5Ce0.5Oδ catalysts and their catalytic performance for soot oxidatio. Chinese Journal of Catalysis, 2015, 36(11): 1957-1967. |
[4] | OBEID E, LIZARRAGA L, TSAMPAS M N,et al. Continuously regenerating diesel particulate filters based on ionically conducting ceramics. Journal of Catalysis, 2014, 309: 87-96. |
[5] | UCHISAWA J O, OBUCHI A, ZHAO Z,et al. Carbon oxidation with platinum supported catalyst. Applied Catalysis B: Environmental, 1998, 18(3/4): L183-L187. |
[6] | LIU J, ZHAO Z, WANG J Q,et al.The highly active catalysts of nanometric CeO2-supported cobalt oxides for soot combustio. Applied Catalysis B: Environmental, 2008, 84(1/2): 185-195. |
[7] | WU X D, LIU S, LIN F,et al.Nitrate storage behavior of Ba/MnOx-CeO2 catalyst and its activity for soot oxidation with heat transfer limitation. Journal of Hazardous Materials, 2010, 181(1/2/3): 722-728. |
[8] | XU J F, LIU J, ZHAO Z,et al.Easy synthesis of three-dimensionally ordered macroporous La1-xKxCoO3 catalysts and their high activities for the catalytic combustion of soo. Journal of Catalysis, 2011, 282(1): 1-12. |
[9] | CAO C M, ZHANG Y X, LIU D S,et al. Gravity-driven multiple collision-enhanced catalytic soot combustion over a space-open array catalyst consisting of ultrathin ceria nanobelt. Small, 2015, 11(30): 3659-3664. |
[10] | AMADINE O, MATTI H, ABDELOUHADI K,et al.Ceria-supported copper nanoparticles: a highly efficient and recyclable catalyst for N-arylation of indol. Journal of Molecular Catalysis A: Chemical, 2014, 395: 409-419. |
[11] | LIU L J, YAO Z J, LIU B,et al.Correlation of structural characteristics with catalytic performance of CuO/CexZr1-xO2 catalysts for NO reduction by C. Journal of Catalysis, 2010, 275(1): 45-60. |
[12] | JIANG D, WANG W Z, ZHANG L,et al.A strategy for improving deactivation of catalytic combustion at low temperature via synergistic photo catalysi. Applied Catalysis B: Environmental, 2015, 165: 399-407. |
[13] | KONSOLAKIS M.The role of copper-ceria interactions in catalysis science: recent theoretical and experimental advance.Applied Catalysis B: Environmental, 2016, 198: 49-66. |
[14] | SAINZ-VIDAL A, BALMASEDA J, LARTUNDO-ROJAS L,et al. Preparation of Cu-mordenite by ionic exchange reaction under milling: a favorable route to form the mono-(μ-oxo) dicopper active specie. Microporous and Mesoporous Materials, 2014, 185: 113-120. |
[15] | VERHELST J, DECROUPET D, DE VOS D.Catalytic self-cleaning coatings for thermal oxidation of organic deposits on glas.Catalysis Science & Technology, 2013, 3(6): 1579-1590. |
[16] | DUPIN J C, GONBEAU D, VINATIER P,et al. Systematic XPS studies of metal oxides, hydroxides and peroxide. Physical Chemistry Chemical Physics, 2000, 2(6): 1319-1324. |
[17] | HUO C L, OUYANG J, YANG H M.CuO nanoparticles encapsulated inside Al-MCM-41 mesoporous material.via direct synthetic route. Scientific Reports, 2014, 4: 3682. |
[18] | FEI Z Y, LU P, FENG X Z,et al. Geometrical effect of CuO nanostructures on catalytic benzene combustio. Catalysis Science & Technology, 2012, 2(8): 1705-1710. |
[19] | BUENO-LOPEZ A.Diesel soot combustion ceria catalyst.Applied Catalysis B: Environmental, 2014, 146: 1-11. |
[20] | ANEGGI E, DE LEITENBURG C, DOLCETTI G, et al. Promotional effect of rare earths and transition metals in the combustion of diesel soot over CeO2 and CeO2-ZrO2.Catalysis Today, 114(1): 40-47. |
[21] | KASPAR J, FORNASIERO P, GRAZIANI M.Use of CeO2-based oxides in the three-way catalysi.Catalysis Today, 1999, 50(2): 285-298. |
[22] | SETIABUDI A, MAKKEE M, MOULIJN J A.The role of NO2 and O2 in the accelerated combustion of soot in diesel exhaust gase.Applied Catalysis B: Environmental, 2004, 50(3): 185-194. |
[1] | 晁少飞, 薛艳辉, 吴琼, 伍复发, MUHAMMAD Sufyan Javed, 张伟. MXene异质结Ti-O-H-O电子快速通道促进高效率储钾[J]. 无机材料学报, 2024, 39(11): 1212-1220. |
[2] | 任冠源, 李宜冠, 丁冬海, 梁瑞虹, 周志勇. CaBi2Nb2O9铁电薄膜的生长取向调控和性能研究[J]. 无机材料学报, 2024, 39(11): 1228-1234. |
[3] | 谢天, 宋二红. 弹性应变对C、H、O在过渡金属氧化物表面吸附的影响[J]. 无机材料学报, 2024, 39(11): 1292-1300. |
[4] | 张哲, 孙婷婷, 王连军, 江莞. 不同维度Ag2Se构筑柔性热电薄膜的性能优化与器件集成研究[J]. 无机材料学报, 2024, 39(11): 1221-1227. |
[5] | 陶顺衍, 杨加胜, 邵芳, 吴应辰, 赵华玉, 董绍明, 张翔宇, 熊瑛. 航机CMC热端部件用热喷涂涂层的机遇与挑战[J]. 无机材料学报, 2024, 39(10): 1077-1083. |
[6] | 江强, 施立志, 陈政燃, 周志勇, 梁瑞虹. 高于居里温度极化的硬性PZT压电陶瓷的制备及叠层驱动器性能研究[J]. 无机材料学报, 2024, 39(10): 1091-1099. |
[7] | 彭萍, 谭礼涛. CuO掺杂(Ba,Ca)(Ti,Sn)O3陶瓷的结构与压电性能[J]. 无机材料学报, 2024, 39(10): 1100-1106. |
[8] | 王博, 蔡德龙, 朱启帅, 李达鑫, 杨治华, 段小明, 李雅楠, 王轩, 贾德昌, 周玉. SrAl2Si2O8增强BN陶瓷的力学性能及抗热震性能[J]. 无机材料学报, 2024, 39(10): 1182-1188. |
[9] | 史瑞, 刘伟, 李林, 李欢, 张志军, 饶光辉, 赵景泰. BaSrGa4O8: Tb3+力致发光材料的制备及性能[J]. 无机材料学报, 2024, 39(10): 1107-1113. |
[10] | 陈梦杰, 王倩倩, 吴成铁, 黄健. 基于DFT的描述符预测生物陶瓷的降解性[J]. 无机材料学报, 2024, 39(10): 1175-1181. |
[11] | 瞿牡静, 张淑兰, 朱梦梦, 丁浩杰, 段嘉欣, 代恒龙, 周国红, 李会利. CsPbBr3@MIL-53纳米复合荧光粉的合成、性能及其白光LEDs应用[J]. 无机材料学报, 2024, 39(9): 1035-1043. |
[12] | 杨佳霖, 王亮君, 阮丝园, 蒋秀林, 杨长. 基于CuI/Si单边异质结的微光高灵敏双波段可切换光电探测器[J]. 无机材料学报, 2024, 39(9): 1063-1069. |
[13] | 王旭, 李翔, 寇华敏, 方伟, 吴庆辉, 苏良碧. 不同浓度Y3+离子掺杂对CaF2晶体性能的影响[J]. 无机材料学报, 2024, 39(9): 1029-1034. |
[14] | 荀道祥, 罗序维, 周明冉, 何佳乐, 冉茂进, 胡执一, 李昱. 锂硒电池ZIF-L衍生氮掺杂碳纳米片/碳布自支撑电极的电化学性能研究[J]. 无机材料学报, 2024, 39(9): 1013-1021. |
[15] | 陈甲, 范依然, 闫文馨, 韩颖超. 聚丙烯酸-钙(铈)纳米团簇荧光探针用于无机磷定量检测研究[J]. 无机材料学报, 2024, 39(9): 1053-1062. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||