无机材料学报 ›› 2017, Vol. 32 ›› Issue (8): 785-791.DOI: 10.15541/jim20160524 CSTR: 32189.14.10.15541/jim20160524
• • 下一篇
王 浩1, 王金龙2, 苟燕子1
收稿日期:
2016-09-18
修回日期:
2016-12-05
出版日期:
2017-08-10
网络出版日期:
2017-07-19
WANG Hao1, WANG Jin-Long2, GOU Yan-Zi1
Received:
2016-09-18
Revised:
2016-12-05
Published:
2017-08-10
Online:
2017-07-19
摘要:
碳化硼(B4C)是一种性能优良的特种陶瓷, 在军事、核工业、航空航天等领域有着广泛的应用。近年来,采用先驱体转化法制备碳化硼陶瓷得到了长足的发展。相比碳化硼材料的其它制备方法, 先驱体转化法具有元素组成简单、成型性好、陶瓷产率高、能耗低等优势, 在制备碳化硼粉体、纤维、介孔材料、微球等方面有着广泛的应用。本文综述了先驱体转化法制备碳化硼陶瓷的最新研究进展, 着重介绍了碳化硼先驱体的合成及应用, 并对先驱体转化法制备碳化硼陶瓷的发展方向和应用前景进行了展望。
中图分类号:
王 浩, 王金龙, 苟燕子. 先驱体转化法制备高性能碳化硼陶瓷材料研究进展[J]. 无机材料学报, 2017, 32(8): 785-791.
WANG Hao, WANG Jin-Long, GOU Yan-Zi. Progress of Advanced Boron Carbide Ceramic Materials Prepared by Precursor Derived Method[J]. Journal of Inorganic Materials, 2017, 32(8): 785-791.
Serial no. | Polymeric precursors | Temperature/℃ | Time/h | Ref. |
---|---|---|---|---|
1 | Mixed solution of PVA, H3BO3 and glycerine | 1200-1500 | 3 | [15] |
2 | Reaction product of glycerin, tartaric acid and H3BO3 | 1250 | 0-5 | [16] |
3 | Reaction product of d-mannitol, H3BO3 | 1500 | 3 | [17] |
4 | Reaction product of tetramethyl/burate and resol, | 1270 | 1-3 | [18-19] |
5 | Condensed product of H3BO3 and mannitol product | 1250 | 5 | [20] |
6 | Reaction product of H3BO3 and sucrose | 1300-1600 | 2-3 | [21] |
7 | Condensation product of H3BO3 and glycerin | 1250 | 5 | [22] |
8 | Condensation product of PVA and H3BO3 | 1000 | - | [23-24] |
9 | Mixed solution of citric acid and H3BO3 | 1450 | 2 | [25] |
10 | Solution product of H3BO3 and glucose | 1400 | - | [26] |
11 | Condensation product of H3BO3 and 2-hydroxy benzyl alcohol | 1500 | 4 | [27] |
表1 含氧先驱体制备碳化硼陶瓷
Table 1 Boron carbide ceramics prepared by oxygen-containing polymeric precursors
Serial no. | Polymeric precursors | Temperature/℃ | Time/h | Ref. |
---|---|---|---|---|
1 | Mixed solution of PVA, H3BO3 and glycerine | 1200-1500 | 3 | [15] |
2 | Reaction product of glycerin, tartaric acid and H3BO3 | 1250 | 0-5 | [16] |
3 | Reaction product of d-mannitol, H3BO3 | 1500 | 3 | [17] |
4 | Reaction product of tetramethyl/burate and resol, | 1270 | 1-3 | [18-19] |
5 | Condensed product of H3BO3 and mannitol product | 1250 | 5 | [20] |
6 | Reaction product of H3BO3 and sucrose | 1300-1600 | 2-3 | [21] |
7 | Condensation product of H3BO3 and glycerin | 1250 | 5 | [22] |
8 | Condensation product of PVA and H3BO3 | 1000 | - | [23-24] |
9 | Mixed solution of citric acid and H3BO3 | 1450 | 2 | [25] |
10 | Solution product of H3BO3 and glucose | 1400 | - | [26] |
11 | Condensation product of H3BO3 and 2-hydroxy benzyl alcohol | 1500 | 4 | [27] |
图1 聚乙烯醇硼酸酯600℃下热解产物的SEM照片(a)和1250℃下处理5 h所获得产物的形貌(b)[49]
Fig. 1 SEM image of the product of the PVBO precursor pyrolyzed at 600℃ (a); morphology of product obtained by heat treatment at 1250℃ for 5 h (b)[49]
图2 碳化硼纳米线(a)[39]、碳化硼纳米空心圆柱体末端(b)[42]、静电纺丝得到的碳化硼纳米纤维(c, d)的SEM照片[53]
Fig. 2 SEM images of the boron carbide nanofibers (a)[39], the end of the boron carbide nanocylinders (b)[42], and the nanofibers obtained via electro-spinning (c, d)[53]
图3 聚合物纤维(a)以及分别在1000℃(b), 1300℃(c)和1600℃(d)裂解得到的碳化硼/碳化硅陶瓷纤维的SEM照片[54]
Fig. 3 SEM images of fiber (a) polymer fibers and the boron- carbide/silicon-carbide ceramic fibers obtained by pyrolysis at (b) 1000℃, (c) 1300℃ and (d) 1600℃[54]
[1] | VLADISLAV D, SARA R, RICHARD A H, et al.Boron carbide: structure, properties, and stability under stress.J. Am. Ceram. Soc., 2011, 94(11): 3605-3628. |
[2] | ZHANG G J, ZOU J, NI D W, et al.Boride ceramics: densification, microstructure tailoring and properties improvement.J. Inorg. Mater., 2012, 27(3): 225-233. |
[3] | REDDY K M, LIU P, HIRATA A, et al.Atomic structure of amorphous shear bands in boron carbide.Nat. Commun., 2013, 4(9): 2483. |
[4] | JIA B R, QIN M L, LI H, et al.Research progress of boron carbide powder preparation methods.Mater. Lett., 2010, 24(5): 32-38. |
[5] | SURI A K, SUBRAMANIAN C, SONBER J K, et al.Synthesis and consolidation of boron carbide: a review.Int. Mater. Rev., 2010, 55: 4-40. |
[6] | SONBER J K, MURTHY T S R CH, SUBRAMANIAN C, et al. Synthesis, densification and characterization of boron carbide.T. Indian Ceram. Soc., 2013, 72(2): 100-107. |
[7] | ALI O S, BRAND J I.Chemical vapor deposition of boron carbide,Mat. Sci. Eng., 2001, (B79): 191-202. |
[8] | HENRIK P, CARINA H, JENS B, et al.Low temperature CVD of thin, amorphous boron-carbon films for neutron detectors.Chem. Vapor Depos., 2012, 18(7/8/9): 221-224. |
[9] | YAJIMA S, OKAMURAK, HAYASH J, et al.Synthesis of continuous SiC fibers with high tensile strength.J. Am. Ceram. Soc., 1976, 59(7/8): 324-327. |
[10] | GOU Y Z, WANG H, JIAN K, et al.Facile synthesis of melt-spinnable polyaluminocarbosilane using low-softening-point polycarbosilane for Si-C-Al-O fibers,J. Mater. Sci., 2016, 51: 8240-8249. |
[11] | XIE Z F, GOU Y Z.Polyaluminocarbosilane as precursor for aluminium-containing SiC fiber from oxygen-free sources.Ceram. Int., 2016, 42: 10439-10443. |
[12] | BIROT M, PILLOT J P, DUNOGUES J.ChemInform abstract: comprehensive chemistry of polycarbosilanes, polysilazanes, and polycarbosilazanes as precursors of ceramics.Chem. Rev., 1995, 26(46):1443-1477. |
[13] | ZHANG X, DONG Z, HUANG Q, et al.Preparation of zirconium diboride powders by co-pyrolysis of a zirconium-containing organic precursor and polyborazine using a solution based method.Ceram. Int., 2014, 40(9): 15207-15214. |
[14] | COLOMBO P, MERA G, RIEDEL R, et al.Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics.J. Am. Ceram. Soc., 2010, 93(93): 1805-1837. |
[15] | CHEN X W, DONG S M, KAN Y M, et al.Effect of glycerine addition on the synthesis of boron carbide from condensed boric acid-polyvinyl alcohol precursor.RSC Advance, 2016, 6: 9338. |
[16] | NAOKI T, MASAKI K, IKUO Y, et al.Effect of addition of tartaric acid on synthesis of boron carbide powder from condensed boric acid-glycerin product.J. Alloys Compd., 2013, 573: 58-64. |
[17] | TRINADHA R P, ANANTHANSIVAN K, ANTHONYSAMY S.Synthesis of boron carbide from boric oxide-sucrose gel precursor.Powder Technol., 2013, 246: 247-251. |
[18] | NAJAFI A, GOLESTANI-FARD F, REZAIE H R, et al.A novel route to obtain B4C nano powder via Sol-Gel method.Ceram. Int., 2012, 38: 3583-3589. |
[19] | NAJAFI A, GOLESTANI-FARD F, REZAIE H R, et al.Effect of APC addition on precursors properties during synthesis of B4C nano powder by a Sol-Gel process.J. Alloys Compd., 2011, 509: 9164-9170. |
[20] | MASAKI K, YUSUKE T, IKUO Y, et al.Synthesis of boron carbide powder in relation to composition and structural homogeneity of precursor using condensed boric acid-polyol product.Powder Technol., 2012, 221: 257-263. |
[21] | TRINADHA R P, ANANTHASIVAN K, ANTHONYSAMY S, et al.Synthesis of nanocrystalline boron carbide from boric acid- sucrose gel precursor.J. Mater. Sci., 2012, 47: 1710-1718. |
[22] | MASAKI K, NAOKI T, IKUO Y, et al.Low-temperature synthesis of boron carbide powder from condensed boric acid-glycerin product,Mater. Lett., 2011, 65: 1839-1841. |
[23] | BARROS P M, YOSHIDA I V P, SCHIAVON M A. Boron- containing poly(vinyl alcohol) as a ceramic precursor.J. Non-Cryst. Solids, 2006, 352(352): 3444-3450. |
[24] | IKUO Y, RIICHI O, HIDEHIKO K.Synthesis of boron Carbide powder from polyvinyl borate precursor.Mater. Lett., 2009, 63: 91-93. |
[25] | SINHA A, MAHATA T, SHARMA B P.Carbothermal route for preparation of boron carbide powder from boric acid-citric acid gel precursor.J. Nucl. Mater., 2002, 301: 165-169. |
[26] | KONNO H, SUDOH A, AOKI Y, et al.Synthesis of C/B4C composites from sugar-boric acid mixed solutions.Mol. Cryst. Liq. Cryst., 2002, 386A(1): 15-20. |
[27] | HASEGAWA I, FUJII Y, TAKAYAMA T, et al.Phenolic resin- boron oxide hybrids as precursors for boron carbide.J. Mater. Sci. Lett., 1999, 18(18): 1629-1631. |
[28] | JOACHIM B, FRITZ A.Precursor-derived covalent ceramics.Adv. Mater., 1995, 7(9): 775-787. |
[29] | RAYMOND H, CHUNG T C.Synthesis and characterization of novel b/c materials prepared by 9-chloroborafluorene precursor.Carbon, 1996, 34(10): 1181-1190. |
[30] | CHASMAWALA M, CHUNG T C.Synthesis of b/c materials from boron containing phenyl acetylides.Carbon, 1997, 35(5): 640-650. |
[31] | MIKE C, YOUMI J, QIANG C, et al.Synthesis of microporous boron-substituted carbon (B/C) materials using polymeric precursors for hydrogen physisorption.J. Am. Chem. Soc., 2008, 130: 6668-6669. |
[32] | MARIO G L, MIRABELLI, SNEDDON L G. Synthesis of boron carbide via poly(vinylpenta-borane) precursors.J. Am. Chem. Soc., 1988, l10: 3305-3307. |
[33] | SNEDDON L G, MARIO G.L. MIRABELLI, et al. Polymeric precursors to boron based ceramics.Pure Appl. Chem., 1991, 63(3): 407-410. |
[34] | PACKIRISAMY S, Decaborane(14)-based polymers.Prog. Polym. Sci, 1996, 21: 707-773. |
[35] | 简科, 王浩, 王军, 等.一种高陶瓷收率聚碳硼烷制备方法, 中国, C08G 79/08, CN104592520A. 2015.05.16. |
[36] | REES W S, SEYFERTH D.Non-polymeric binders for ceramic powders: utilization of neutral and ionic species derived from decaborane(14).J. Mater. Sci., 1989, 24: 4220-4224. |
[37] | REES W S, SEYFERTH D.High-yield synthesis of B4C/BN ceramic materials by pyrolysis of polymeric lewis base adducts of decaborane(14).J. Am. Ceram. Soc., 1988, 71: C194-C196. |
[38] | PENDER M J, CARROLL P J, SNEDDON L G.Transition-metal-promoted reactions of boron hydrides. 17.1 titanium-catalyzed decaborane-olefin hydroborations.J. Am. Chem. Soc., 2001, 123: 12222-12231. |
[39] | PENDER M J, SNEDDON L G.An efficient template synthesis of aligned boron carbide nanofibersusing a single-source molecular precursor.Chem. Mater., 2000, 12: 280-283. |
[40] | FORSTHOEFEL K M, SNEDDON L G.Precursor routes to group 4 metal borides, and metal boride/carbide and metal boride/nitride composites.J. Mater. Sci., 2004, 39(19): 6043-6049. |
[41] | 刘辉, 王应德, 冯春祥, 等. 聚碳硅烷流变性能研究, 合成纤维工业, 2001, 24(5): 23-25. |
[42] | SNEDDON L G, PENDER M J, FORSTHOEFEL K M, et al.Design, syntheses and applications of chemical precursors to advanced ceramic materials in nanostructured forms.J. Eur. Ceram. Soc., 2005, 25(2): 91-97. |
[43] | WEI X L, PATRICK J C, SNEDDON L G.Ruthenium-catalyzed ring-opening polymerization syntheses of poly(organodecaboranes): new single-source boron-carbide precursors.Chem. Mater., 2006, 18:1113-1123. |
[44] | ZHANG X J, LI J, CAO K, et al.Synthesis and characterization of B-C polymer hollow microspheres from a new organodecaborane preceramic polymer.RSC Advances, 2015, 5: 86214-86218. |
[45] | CHATTERJEE S, CARROLL P J, SNEDDON L G.Iridium and ruthenium catalyzed syntheses, hydroborations, and metathesis reactions of alkenyl-decaboranes.Inorg. Chem., 2013, 52(15): 9119-9130. |
[46] | YU X H, CAO K, HUANG Y W, et al.Platinum catalyzed sequential hydroboration of decaborane: a facile approach to poly(alkenyldecaborane) with decaborane in the mainchain.Chem. Commun., 2014, 50: 4585-4587. |
[47] | KUSARI U, LI Y Q, BRADLEY M G, SNEDDON L G.Polyborane reactions in ionic liquids: new efficient routes to functionalized decaborane and o-carborane clusters.J. Am. Chem. Soc., 2004, 126: 8662-8663. |
[48] | LI Y Q, CARROLL P J, SNEDDON L G.Ionic-liquid-promoted decaborane dehydrogenative alkyne-insertion reactions: a new route to o-carboranes.Inorg. Chem., 2008, 47: 9193-9202. |
[49] | MASAKI K, NAOKI T, SATOMI Y, et al.Effect of boron oxide/carbon arrangement of precursor derived from condensed polymer-boric acid product on low-temperature synthesis of boron carbide powder.J. Ceram. Soc. Jpn., 2011, 119(6): 422-425. |
[50] | GAO Y, WILLIAM R, MUHAMMET F T, et al.Improvement of crystallization and particle size distribution of boric acid in the processing of a boron carbide precursor.RSC Advances, 2015, 5: 19067-19073. |
[51] | GAO Y, ANTHONY E, TYLER M, et al.Processing factors influencing the free carbon contents in boron carbide powder by rapid carbothermal reduction.Diam. Relat. Mater., 2016, 61: 14-20. |
[52] | ZHANG D, MCILROY D N, GENG Y, et al.Growth and characterization of boron carbide nanowires.J. Mater. Sci. Lett., 1999, 18(5): 349-351. |
[53] | DANIE T W, JARED D B, WEI X L.Preparation of boron- carbide/carbon nanofibers from a poly(norbornenydecaborane) single-source precursor via electrostatic spinning.Adv. Mater., 2005, 17: 859-862. |
[54] | MARTA M G, WEI X L, DANIEL W, et al.Preceramic polymer blends as precursors for boron-carbide/silicon-carbide composite ceramics and ceramic fibers.Chem. Mater., 2009, 21: 1708-1715. |
[55] | AROATI S, CAFRI M, DILMAN H, et al.Preparation of reaction bonded silicon carbide (RBSC) using boron carbide as an alternative source of carbon.J. Eur. Ceram. Soc., 2011, 31: 841-845. |
[56] | III J P, SUBHASH G, ZHENG J, et al.The rate-dependent fracture toughness of silicon carbide- and boron carbide-based ceramics.J. Eur. Ceram. Soc., 2015, 35(16): 4411-4422. |
[57] | BORCHARDT L, KOCKRICK E, WOLLMANN P, et al.Ordered mesoporous boron carbide based materials via precursor nanocasting.Chem. Mater., 2010, 22: 4660-4668. |
[58] | LU A H, SCHUTH F.Nanocasting: a versatile strtegy for creating nanostrictured porous materials.Adv. Mater., 2006, 18(14): 1793-1805. |
[59] | MALENFANT P R, WAN J, TAYLOR S T, et al.Self-assembly of an organic-inorganic block copolymer for nano-ordered ceramics. Nat. Nanotechnol., 2007, 2(1): 43-46. |
[60] | 简科, 王浩, 王军, 等.一种碳化硼空心微球的制备方法. 中国, C01B31/36, CN104609423A. 2016.06.01. |
[61] | WANG J L, GOU Y Z, WANG H, et al.Boron carbide ceramic hollow microspheres prepared from poly(6-CH2=CH(CH2)4-B10H13) precursor.Mater. Design, 2016, 109: 408-414. |
[62] | YU XIAO-HE, LU TIE-CHENG, LIN TAO, et al.Preparation of boron carbide spherical films and hollow microsphere.J. Inorg. Materials, 2012, 27(12): 1325-1330. |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[5] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[6] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[7] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[8] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[9] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[10] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[11] | 郑雅雯, 张翠萍, 张瑞杰, 夏乾, 茹红强. 硼酸碳热还原-渗硅反应烧结制备碳化硼陶瓷复合材料[J]. 无机材料学报, 2024, 39(6): 707-714. |
[12] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[13] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[14] | 李宗晓, 胡令祥, 王敬蕊, 诸葛飞. 氧化物神经元器件及其神经网络应用[J]. 无机材料学报, 2024, 39(4): 345-358. |
[15] | 鲍可, 李西军. 化学气相沉积法制备智能窗用热致变色VO2薄膜的研究进展[J]. 无机材料学报, 2024, 39(3): 233-258. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||