无机材料学报 ›› 2017, Vol. 32 ›› Issue (12): 1285-1291.DOI: 10.15541/jim20170072 CSTR: 32189.14.10.15541/jim20170072
邓子谦1,2, 刘敏2,3, 毛杰2, 张小锋2, 陈文龙2, 陈志坤2
收稿日期:
2017-02-20
修回日期:
2017-04-27
出版日期:
2017-12-20
网络出版日期:
2017-11-21
作者简介:
邓子谦(1988-), 男, 博士研究生. E-mail: dengziqian0404@163.com
基金资助:
DENG Zi-Qian1,2, LIU Min2,3, MAO Jie2, ZHANG Xiao-Feng2, CHEN Wen-Long2, CHEN Zhi-Kun2
Received:
2017-02-20
Revised:
2017-04-27
Published:
2017-12-20
Online:
2017-11-21
摘要:
以等离子喷涂-物理气相沉积(PS-PVD)喷涂团聚的 ZrO2-7wt%Y2O3(7YSZ)粉末在五个喷距下制备了热障涂层。通过场发射-扫描电镜(FE-SEM)和X射线衍射(XRD)分析了五个涂层样品的微观结构和相成分差异。另外, 通过发射光谱(OES)诊断研究了射流中7YSZ粉末气相浓度随喷距的变化。最后, 阐述了3种不同的气相沉积涂层生长机制, 说明了射流中粉末的状态和气相浓度对涂层结构的影响。研究表明:(1)350 mm和1800 mm喷距下形成的均是致密结构涂层, 而650~1250 mm喷距下形成的是典型的PS-PVD柱状结构涂层。(2)350 mm喷距下制备的涂层由四方相(t’)和单斜相(m)氧化锆构成; 当喷距大于650 mm时, 涂层以四方相(t’)氧化锆为主。(3)350 mm喷距下涂层是由高浓度气相过饱和自发形核形成的新核和液/固粒子共同作用形成的; 喷距650~1250 mm下, 涂层生长以气相沉积于基体进行非自发形核为主, 气相在射流中的自发形核为辅; 喷距1800 mm下涂层由气相过冷凝固的粒子堆积而成。
中图分类号:
邓子谦, 刘敏, 毛杰, 张小锋, 陈文龙, 陈志坤. 等离子喷涂-物理气相沉积的气相沉积机理[J]. 无机材料学报, 2017, 32(12): 1285-1291.
DENG Zi-Qian, LIU Min, MAO Jie, ZHANG Xiao-Feng, CHEN Wen-Long, CHEN Zhi-Kun. Deposition Mechanism Based on Plasma Spray-Physical Vapor Deposition[J]. Journal of Inorganic Materials, 2017, 32(12): 1285-1291.
Gun | Power/ kW | Ar/ slpm | He/ slpm | Chamber pressure/Pa | Feed rate/ (g•min-1) | Stand-off distance/ mm |
---|---|---|---|---|---|---|
O3CP | 127 | 35 | 60 | 150 | 20 | 350, 650, 950, 1250, 1800 |
表1 PS-PVD 喷涂 7YSZ 热障涂层参数
Table 1 Parameters of 7YSZ coating by PS-PVD
Gun | Power/ kW | Ar/ slpm | He/ slpm | Chamber pressure/Pa | Feed rate/ (g•min-1) | Stand-off distance/ mm |
---|---|---|---|---|---|---|
O3CP | 127 | 35 | 60 | 150 | 20 | 350, 650, 950, 1250, 1800 |
图2 不同喷涂距离下的PS-PVD YSZ柱状结构涂层的SEM照片
Fig. 2 SEM morphologies of 7YSZ columnar coating formed at different stand-off distances^(a) (d) 650 mm; (b) (e) 950 mm; (c) (f) 1250 mm
图3 不同喷涂距离下的PS-PVD YSZ致密结构涂层的SEM照片
Fig. 3 SEM morphologies of 7YSZ dense coating formed at different stand-off distances^(a) (c) 350 mm; (b) (d) 1800 mm
[1] | REFKE A, GINDRAT M, VON NIESSEN K, et al.LPPS Thin Film: a Hybrid Coating Technology between Thermal Spray and PVD for Functional Thin Coatings and Large Area Applications. ITSC,Beijing, 2007: 14-16. |
[2] | DORIER J L, GINDRAT M, HOLLENSTEIN C, et al.Plasma Jet Properties in a New Spraying Process at Low Pressure for Large Area Thin Film Deposition. ITSC,Singapore, 2001: 759-764. |
[3] | HALL A C, MCCLOSKEY J F, URREA D A, et al.Low Pressure Plasma Spray—Thin Film® at Sandia National Laboratories. ITSC, 2009: 725-728. |
[4] | SMITH M F, HALL A C, FLEETWOOD J D, et al.Very low pressure plasma spray—a review of an emerging technology in the thermal spray community. Coatings, 2011, 1(2): 117-132. |
[5] | MAUER G, VAßEN R, STOVER D. Thin and dense ceramic coatings by plasma spraying at very low pressure. Journal of Thermal Spray Technology, 2010, 19(1/2): 495-501. |
[6] | SHINOZAWA A, EGUCHI K, KAMBARA M, et al.Feather-like structured YSZ coatings at fast rates by plasma spray physical vapor deposition. Journal of Thermal Spray Technology, 2010, 19(1/2): 190-197. |
[7] | VON NIESSEN K, GINDRAT M, REFKE A.Vapor phase deposition using plasma spray-PVD™. Journal of Thermal Spray Technology, 2010, 19(1/2): 502-509. |
[8] | KAMBARA M, SHINOZAWA A, AOSHIKA K, et al.Development of porous YSZ coatings with modified thermal and optical properties by plasma spray physical vapor deposition. Journal of Solid Mechanics and Materials Engineering, 2010, 4(2): 94-106. |
[9] | MAUER G.Plasma characteristics and plasma-feedstock interaction under PS-PVD process conditions. Plasma Chemistry and Plasma Processing, 2014, 34(5): 1171-1186. |
[10] | SCHMITT M P, HARDER B J, WOLFE D E.Process-struc¬ture- property relations for the erosion durability of plasma spray- physical vapor deposition (PS-PVD) thermal barrier coatings. Surface and Coatings Technology, 2016, 297: 11-18. |
[11] | REFKE A, HAWLEY D, DOESBURG J, et al.LPPS Thin Film Technology for the Application of TBC Systems. ITSC,Basel, 2005: 438-443 |
[12] | HOSPACH A, MAUER G, VAßEN R, et al. Columnar-structured thermal barrier coatings (TBCs) by thin film low-pressure plasma spraying (LPPS-TF). Journal of Thermal Spray Technology, 2011, 20(1/2): 116-120. |
[13] | GORAL M, KOTOWSKI S, NOWOTNIK A, et al.PS-PVD deposition of thermal barrier coatings. Surface and Coatings Technology, 2013, 237: 51-55. |
[14] | REZANKA S, MAUER G, VAßEN R. Improved thermal cycling durability of thermal barrier coatings manufactured by PS-PVD. Journal of Thermal Spray Technology, 2014, 23(1/2): 182-189. |
[15] | SONG J, ZHANG X, DENG C, et al.Research of in situ modified PS-PVD thermal barrier coating against CMAS (CaO-MgO-Al2 O3-SiO2) corrosion. Ceramics International, 2016, 42(2): 3163-3169. |
[16] | GAO L, GUO H, WEI L, et al.Microstructure, thermal conductivity and thermal cycling behavior of thermal barrier coatings prepared by plasma spray physical vapor deposition. Surface and Coatings Technology, 2015, 276: 424-430. |
[17] | MAUER G, HOSPACH A, VAßEN R. Process development and coating characteristics of plasma spray-PVD. Surface and Coatings Technology, 2013, 220: 219-224. |
[18] | MAUER G, HOSPACH A, ZOTOV N, et al.Process conditions and microstructures of ceramic coatings by gas phase deposition based on plasma spraying. Journal of Thermal Spray Technology, 2013, 22(2/3): 83-89. |
[19] | VON NIESSEN K, GINDRAT M.Plasma spray-PVD: a new thermal spray process to deposit out of the vapor phase. Journal of Thermal Spray Technology, 2011, 20(4): 736-743. |
[20] | MAUER G, VAßEN R. Plasma spray-PVD: plasma characteristics and impact on coating properties. Journal of Physics: Conference Series, 2012, 406: 012005-012017. |
[21] | LI C, GUO H, GAO L, et al.Microstructures of yttria-stabilized zirconia coatings by plasma spray-physical vapor deposition. Journal of Thermal Spray Technology, 2015, 24(3): 534-541. |
[22] | GAO L, WEI L, GUO H, et al.Deposition mechanisms of yttria-stabilized zirconia coatings during plasma spray physical vapor deposition. Ceramics International, 2016, 42(4): 5530-5536. |
[23] | GAO L, GUO H, WEI L, et al.Microstructure and mechanical properties of yttria stabilized zirconia coatings prepared by plasma spray physical vapor deposition. Ceramics International, 2015, 41(7): 8305-8311. |
[24] | ZHANG X F, ZHOU K S, DENG C M, et al.Gas-deposition mechanisms of 7YSZ coating based on plasma spray-physical vapor deposition. Journal of the European Ceramic Society, 2016, 36(3): 697-703. |
[25] | ZHANG X F, ZHOU K S, SONG J B, et al.Deposition and CMAS corrosion mechanism of 7YSZ thermal barrier coatings prepared by plasma spray-physical vapor deposition. Journal of Inorganic Materials, 2015, 30(3): 287-293. |
[26] | GINDRAT M.Characterization of Supersonic Low Pressure Plasma Jets. Doctoral Thesis, 2004. |
[27] | ZHANG X F, ZHOU K S, ZHANG J F, et al.Structure evolution of 7YSZ thermal barrier coating during thermal shock testing. Journal of Inorganic Materials, 2015, 30(12): 1261-1266. |
[28] | GARVIE R C, HANNINK R H, PASCOE R T.Ceramic steel? Nature, 1975, 258(5537): 703-704. |
[29] | HAN P, YOSHIDA T.Numerical investigation of thermophoretic effects on cluster transport during thermal plasma deposition process. Journal of applied physics, 2002, 91(4): 1814-1818. |
[30] | ORHING M.Materials Science of Thin Films: Deposition and Structure, 2nd ed. London: Academic Press, 2001: 357-406. |
[31] | VENABLES J A, SPILLER G D T, HANBUCKEN M. Nucleation and growth of thin films. Reports on Progress in Physics, 1984, 47(4): 399. |
[32] | THORNTON J A.Influence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings. Journal of Vacuum Science and Technology, 1975, 12(4): 830-835. |
[1] | 晁少飞, 薛艳辉, 吴琼, 伍复发, MUHAMMAD Sufyan Javed, 张伟. MXene异质结Ti-O-H-O电子快速通道促进高效率储钾[J]. 无机材料学报, 2024, 39(11): 1212-1220. |
[2] | 任冠源, 李宜冠, 丁冬海, 梁瑞虹, 周志勇. CaBi2Nb2O9铁电薄膜的生长取向调控和性能研究[J]. 无机材料学报, 2024, 39(11): 1228-1234. |
[3] | 谢天, 宋二红. 弹性应变对C、H、O在过渡金属氧化物表面吸附的影响[J]. 无机材料学报, 2024, 39(11): 1292-1300. |
[4] | 张哲, 孙婷婷, 王连军, 江莞. 不同维度Ag2Se构筑柔性热电薄膜的性能优化与器件集成研究[J]. 无机材料学报, 2024, 39(11): 1221-1227. |
[5] | 陶顺衍, 杨加胜, 邵芳, 吴应辰, 赵华玉, 董绍明, 张翔宇, 熊瑛. 航机CMC热端部件用热喷涂涂层的机遇与挑战[J]. 无机材料学报, 2024, 39(10): 1077-1083. |
[6] | 江强, 施立志, 陈政燃, 周志勇, 梁瑞虹. 高于居里温度极化的硬性PZT压电陶瓷的制备及叠层驱动器性能研究[J]. 无机材料学报, 2024, 39(10): 1091-1099. |
[7] | 彭萍, 谭礼涛. CuO掺杂(Ba,Ca)(Ti,Sn)O3陶瓷的结构与压电性能[J]. 无机材料学报, 2024, 39(10): 1100-1106. |
[8] | 王博, 蔡德龙, 朱启帅, 李达鑫, 杨治华, 段小明, 李雅楠, 王轩, 贾德昌, 周玉. SrAl2Si2O8增强BN陶瓷的力学性能及抗热震性能[J]. 无机材料学报, 2024, 39(10): 1182-1188. |
[9] | 史瑞, 刘伟, 李林, 李欢, 张志军, 饶光辉, 赵景泰. BaSrGa4O8: Tb3+力致发光材料的制备及性能[J]. 无机材料学报, 2024, 39(10): 1107-1113. |
[10] | 陈梦杰, 王倩倩, 吴成铁, 黄健. 基于DFT的描述符预测生物陶瓷的降解性[J]. 无机材料学报, 2024, 39(10): 1175-1181. |
[11] | 瞿牡静, 张淑兰, 朱梦梦, 丁浩杰, 段嘉欣, 代恒龙, 周国红, 李会利. CsPbBr3@MIL-53纳米复合荧光粉的合成、性能及其白光LEDs应用[J]. 无机材料学报, 2024, 39(9): 1035-1043. |
[12] | 杨佳霖, 王亮君, 阮丝园, 蒋秀林, 杨长. 基于CuI/Si单边异质结的微光高灵敏双波段可切换光电探测器[J]. 无机材料学报, 2024, 39(9): 1063-1069. |
[13] | 王旭, 李翔, 寇华敏, 方伟, 吴庆辉, 苏良碧. 不同浓度Y3+离子掺杂对CaF2晶体性能的影响[J]. 无机材料学报, 2024, 39(9): 1029-1034. |
[14] | 荀道祥, 罗序维, 周明冉, 何佳乐, 冉茂进, 胡执一, 李昱. 锂硒电池ZIF-L衍生氮掺杂碳纳米片/碳布自支撑电极的电化学性能研究[J]. 无机材料学报, 2024, 39(9): 1013-1021. |
[15] | 陈甲, 范依然, 闫文馨, 韩颖超. 聚丙烯酸-钙(铈)纳米团簇荧光探针用于无机磷定量检测研究[J]. 无机材料学报, 2024, 39(9): 1053-1062. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||